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Abstract—We consider the sample complexity of revenue
maximization for multiple bidders in unrestricted multi-
dimensional settings. Specifically, we study the standard model
of n additive bidders whose values for m heterogeneous items
are drawn independently. For any such instance and any ε > 0,
we show that it is possible to learn an ε-Bayesian Incentive
Compatible auction whose expected revenue is within ε of the
optimal ε-BIC auction from only polynomially many samples.

Our approach is based on ideas that hold quite generally,
and completely sidestep the difficulty of characterizing optimal
(or near-optimal) auctions for these settings. Therefore, our
results easily extend to general multi-dimensional settings,
including valuations that aren’t necessarily even subadditive,
and arbitrary allocation constraints. For the cases of a single
bidder and many goods, or a single parameter (good) and
many bidders, our analysis yields exact incentive compatibility
(and for the latter also computational efficiency). Although the
single-parameter case is already well-understood, our corollary
for this case extends slightly the state-of-the-art.

Keywords-algorithmic game theory; algorithmic mechanism
design; auctions; sample complexity; generalization bounds;
PAC learning; approximate revenue maximization; multi-
dimensional auctions;

I. INTRODUCTION

A fundamental question at the heart of the literature on
mechanism design is that of revenue maximization by a
single seller who is offering for sale any number of goods to
any number of (potential) bidders. In the classic economic
literature, this problem is studied in a Bayesian setting: the
seller has prior knowledge of (often, independent) distri-
butions from which the valuation of each bidder for each
good is drawn, and wishes to devise a truthful mechanism
that maximizes her revenue in expectation over these prior
distributions. Over the past few years, numerous works at the
interface of economics and computation are now studying a
more demanding model: that of mechanism design from sam-
ples. In this model, rather than possessing complete knowl-
edge of the distributions from which the bidders’ values for
the various items are drawn, the seller more realistically only
has access to samples from these distributions (e.g., past
data). The goal in this setting is to learn with high probability

A full version of this paper with complete proofs is available on
arXiv.org.

an auction with good revenue guarantees given polynomially
many (in the parameters of the problem) samples.

Revenue maximization from samples is somewhat ubiqui-
tously seen as a “next step” beyond Bayesian revenue max-
imization. That is, existing works so far in this context take
settings for which simple auctions in the related Bayesian
problem are already well-understood and prove that these
simple auctions can be learned efficiently via samples (up
to an ε loss, which will always be lost when optimizing from
samples). For example: in single-parameter settings, seminal
work of Myerson [1] completely characterizes a simple and
optimal auction in the Bayesian setting, and works such
as Cole and Roughgarden [2], Morgenstern and Roughgar-
den [3], Devanur et al. [4], Hartline and Taggart [5], Rough-
garden and Schrijvers [6], Gonczarowski and Nisan [7]
prove that these simple mechanisms or variants thereof can
be learned with polynomially many samples. Similarly, in
multi-parameter settings with independent items, works of
Chawla et al. [8]–[10], Hart and Nisan [11], Babaioff et
al. [12], Rubinstein and Weinberg [13], Yao [14], Cai et
al. [15], Chawla and Miller [16], Cai and Zhao [17] prove
that simple mechanisms achieve constant-factor approxi-
mations in rich multi-dimensional settings, and works of
Morgenstern and Roughgarden [18], Balcan et al. [19], [20],
Cai and Daskalakis [21], Syrgkanis [22] prove that simple
mechanisms with these guarantees can be learned with poly-
nomially many samples. These analyses rely on a delicate
understanding of the structure and/or inherent dimensionality
of auctions that give such revenue guarantees to show how
to learn such an auction without overfitting the samples.

It is therefore unsurprising that the problem of learning
an up-to-ε revenue-maximizing multi-item auction from
samples has not been previously studied, since the struc-
ture/dimensionality of optimal (precisely or up-to-ε) multi-
item auctions is not understood even when there is only
one bidder, and even with independent items. Such auc-
tions are known to be extremely complex, suffering from
properties such as randomization [23], uncountable menu
complexity [24], and non-monotonicity [25]. Such domains
provably lack the natural starting point of all previous works:
a structured/low-dimensional mechanism in the Bayesian
setting to learn via samples.
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In this paper we show that despite these challenges,
up-to-ε optimal multi-item auctions can be learned from
polynomially many samples from the underlying bidder-item
distributions. More formally, in a setting with n bidders and
m items where the value of each bidder i for each item j
is drawn independently from a distribution Vi,j supported
on [0, H] for some H that is known to the seller, we show
that polynomially many samples suffice for learning, with
probability at least 1− δ, an m-item almost-truthful auction
that maximizes the expected revenue among all possible m-
item almost-truthful auctions up to an additive ε. Below,
BIC refers to Bayesian Incentive Compatible: an auction for
which it is in every bidders’ interest to bid truthfully, given
that all other bidders do so as well.

Theorem 1 (Main Result — informal version of The-
orem 4). For n bidders with independent values for m
items supported on [0, H], for every ε, δ > 0 and for
every η ≤ poly(n,m,H, ε), the sample complexity of
learning, w.p. 1 − δ, an η-BIC auction that maximizes
revenue (among all η-BIC auctions) up to an additive ε is
poly(n,m,H, 1/ε, 1/η, log 1/δ).

The above theorem is informal mostly because we have
not specified exactly how bidders value bundles of items.
Essentially the bidders may have arbitrary (i.e., not neces-
sarily additive, not even necessarily subadditive) valuations
subject to some Lipschitz condition (i.e., changing the value
of bidder i for item j by ε only changes the bidder’s value for
any outcome by at most Lε for some absolute constant L).1

We defer a formal definition to Section II, but only note here
that commonly studied classes of valuations such as addi-
tive, unit-demand, or “additive subject to constraints” with
independent items (as well as several natural subadditive and
superadditive valuation classes) all satisfy our definition with
Lipschitz constant 1.

The main challenge in proving our result for m > 1 items
is noted above: the structure of (up-to-ε) optimal mecha-
nisms for such settings is not understood, even for additive
valuations. In particular, there is no known low-dimensional
class of mechanisms that is guaranteed to contain an (up-to-
ε) optimal mechanism for any product distribution, thus bar-
ring the use of many learning-theoretic arguments. Our result
relies on a succinct structured argument, allowing to reduce
revenue maximization from samples to related problems of
revenue maximization from given discrete distributions.

As the corresponding Bayesian question remains open
(i.e., whether one can find, given the distributions explicitly,
an up-to-ε optimal mechanism in poly-time), our result is
of course information-theoretic: it shows that polynomially
many samples suffice for a computationally unbounded
seller, but provides no computationally efficient learning

1Our results in fact hold even more generally: to arbitrary outcomes that
do not even correspond to bundles of items. See Section II for the full
details.

algorithm. Concretely, the algorithm that we give uses as
a black box an oracle that can perform (optimal or almost-
optimal) multi-item Bayesian revenue maximization given
(the full description of) finite prior distributions.2

A. Brief Overview of Techniques

Most prior works (for single- as well as multi-dimensional
settings) take the following approach: first, define a class Cε
of auctions as a function of ε. Second, prove that, for all
possible distributions D, the class Cε contains an up-to-ε
optimal mechanism for D. Finally, prove that the best-in-
class (up to ε) for Cε can be learned with polynomially many
samples. In prior works, ingenuity is required for both steps:
Cε is explicitly defined, proved to contain up-to-ε optimal
auctions, and proved to have some low-dimensional structure
allowing efficient learnability.

Our approach indeed follows this rough outline, with
two notable simplifying exceptions. First is our approach
to defining Cε. Here, we first define Cε,S be the space of
all auctions that are optimal for an empirical distribution
over S-many poly(ε)-rounded samples (that is, optimal for
any discrete product distribution where each marginal is:
a) only supported on multiples of poly(ε) and b) uniform
over a multiset of size S). While, unlike popular existing
approaches, the set Cε,S grows with the number of sam-
ples S, we show that the rate of its growth is moderate
enough so that there exists a “sweet-spot” number of samples
S = poly(1/ε) such that on the one hand Cε,S contains an
auction that is up-to-ε optimal for the “true distribution” D
and on the other hand, the best-in-class from Cε,S can be
learned from S samples. So in the language of prior work,
one could say that we set Cε = Cε,S for this S = poly(1/ε).

To show that Cε does in fact contain, for all distribu-
tions D, an auction that is up-to-ε optimal for D, we simply
take enough samples to guarantee uniform convergence (of
the revenue) over Cε and additionally the optimal auction
for D. It’s far from obvious why this should suffice, as the
optimal auction for D is not an element of Cε, nor even of the
same format.3 Still existing tools (namely, the ε-BIC-to-BIC
reduction of Daskalakis and Weinberg [26], Rubinstein and
Weinberg [13]), when applied correctly, suffice to complete
the argument. This part of our proof is conceptually much
simpler than prior works (despite making use of a big
technical hammer), as this approach holds quite generally
and is robust due to not requiring the analysis of any specific
class of mechanisms.

Second, our argument that the best-in-class can be in fact

2Note however that if computationally efficient algorithms were to be
developed for up-to-ε optimal mechanisms given an explicit prior, then our
approach would immediately become computationally efficient as well.

3That is, the optimal auction for D is a mapping from the the support
of D to outcomes, whereas the elements of Cε are mappings from
a finite space to outcomes. Furthermore, notions of Bayesian incentive
compatibility for D do not imply nor are implied by these notions for
the various discrete distributions defining Cε.
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learned (up to ε) with S = poly(ε) samples is simply a
counting argument, and does not require any notions of a
learning dimension. This is indeed in the spirit of some
recent single-dimensional results, however in those results
the counting argument is highly dependent on the structure
of auctions in Cε. As discussed above, such dependence is
damning for multi-dimensional settings where such struc-
ture provably doesn’t exist. Again, the proof does require
some hammers (notably, arguments originally developed
for reduced forms via samples in Cai et al. [27], and a
concentration inequality of Babichenko et al. [28], Devanur
et al. [4]), but they are applied in a fairly transparent manner.

The above approach should help explain how we are
able to extend far beyond prior works, which relied on a
detailed analysis of specific structured mechanisms: The
key tools we use are applicable quite generally, whereas
the specific mechanisms analyzed in prior work are only
known to maintain guarantees only in restricted settings.
For example, Theorem 1 already constitutes the first up-to-ε
optimal-mechanism learning result for any multi-parameter
setting even if it held only for additive valuations (and one
bidder). But the approach is so general that extending it
to arbitrary Lipschitz valuations with independent items is
simply a matter of updating notation.

B. Applications and Extensions

Specialized to a single-bidder setting, our construction in
fact yields exact truthfulness (more on that in Section VI),
showing that an ε-optimal mechanism can be found for a
single bidder with independent item values (with Lipschitz
valuations) using only polynomially many samples. This
should be contrasted with a result of Dughmi et al. [29],
which shows that achieving this is not possible for correlated
distributions, even for a buyer with additive valuations.

Corollary 1 (Single Bidder — informal version of The-
orem 5). For one bidder with independent values for m
items supported on [0, H], for every ε, δ > 0, the sample
complexity of learning, w.p. 1−δ, an IC auction that maxi-
mizes revenue (among all IC auctions) up to an additive ε
is poly(m,H, 1/ε, log 1/δ).

Specialized to single-dimensional settings, our analysis
once again yields a strengthened result, both in giving
exact Dominant Strategy Incentive Compatibility (DSIC)4,
and in providing a computationally efficient algorithm (due
to known efficient solutions [1], [30] to single-parameter
revenue maximization from given discrete distributions):

Corollary 2 (Single-Parameter — informal version of The-
orem 6). For n single-parameter bidders with independent
values in [0, H], for every ε, δ > 0, the sample complexity of

4A mechanism is DSIC if it is a dominant strategy for each bidder to bid
truthfully. For a single good, Myerson [1] shows that the maximal revenue
attainable by a BIC mechanism and by a DSIC mechanism is the same.

efficiently learning, w.p. 1−δ, a DSIC auction that maximizes
revenue (among all DSIC auctions) up to an additive ε is
poly(n,H, 1/ε, log 1/δ).

Corollary 2 nicely complements the existing literature
on single-parameter sample complexity in the following
ways. First, our algorithm/analysis immediately follows as
a special case of Theorem 1 (without referencing structural
results about optimal single-parameter auctions), so it is in
some sense more principled. Second, our analysis holds even
for arbitrary constraints on the allocations (putting it in the
same class as the state-of-the-art5 single-parameter results
[5], [7], and even slightly beyond6).

Finally, portions of our approach are specific to Bayesian
Incentive Compatible auctions (versus Dominant Strategy
Incentive Compatible auctions), but portions are not. We’re
therefore able to use the same techniques to conclude similar,
albeit qualitatively weaker, results for ε-DSIC auctions in the
full paper.

C. Related Work and Brief Discussion

Two active lines of work are directly related to the present
paper. First are papers that study rich multi-dimensional
settings, and aim to show that mechanisms with good
approximation guarantees can be learned with few samples,
such as Morgenstern and Roughgarden [18], Balcan et
al. [19], [20], Cai and Daskalakis [21], Syrgkanis [22].
The main approach in each of these works is to show
that specific classes of structured mechanisms (e.g., classes
that are known to allow for constant-factor revenue max-
imization) are inherently low-dimensional with respect to
some notion of dimensionality. Our results are stronger
than these in some regards and weaker in others. More
specifically, our results are stronger in the sense that with
comparably many samples, our mechanisms guarantee an
up-to-ε approximation to the optimal mechanism instead
of a constant-factor. Our results are weaker in the sense
that our learning algorithms are information-theoretic (do
not run in poly-time), and our mechanisms are not “as
simple.” As discussed earlier, both weaknesses are necessary
in order to possibly surpass the constant-factor barrier (at
least, barring the resolution of major open questions, such as
a computationally efficient up-to-ε approximation even when
all distributions are explicitly known. Again, note that should
this question be resolved affirmatively, our results would
immediately become computationally efficient as well).

5Here and throughout the paper when we refer to “state-of-the-art”
for single-parameter settings, we are specifically referring to allocation
constraints that can be accommodated.

6Note that for the single-parameter setting, our algorithm in fact coincides
with that of Devanur et al. [4]. However our analysis, unlike theirs, extends
to arbitrary allocation constraints. Our approach also transparently handles
mild extensions of constraints beyond those considered in Hartline and
Taggart [5], Gonczarowski and Nisan [7]. Gonczarowski and Nisan [7]
explicitly state that their techniques cannot handle such extensions and
leave this question (which we successfully resolve) open.

418



Most related to our work, at least in terms of techniques,
is the rich line of works on single-dimensional settings [2]–
[7], [31], [32]. These works show that up-to-ε optimal
mechanisms can be learned in richer and richer settings. In
comparison to these works, our single-dimensional results
slightly extend the state-of-the-art [5], [7] as a corollary of
a more general theorem that applies to multi-dimensional
settings. Even restricted to single-dimensional settings, our
proof is perhaps more transparent.

We conclude with a brief discussion and an open problem.
Corollaries 1 and 2 are both deduced from Theorem 1 by
use of an argument as to why the resulting ε-BIC auction is
in fact BIC, or by using an ε-BIC to BIC reduction that loses
negligible revenue. Given that we have explicitly referenced
the existence of a quite general ε-BIC-to-BIC reduction, the
reader may be wondering why this reduction does not in fact
allow our general results to be exactly BIC as well.

The main barrier is the following: in order to actually run
the ε-BIC-to-BIC reduction as part of our auction for n > 1
bidders, one must take samples exponential in the number of
items from each bidders’ value distribution. This means that
even though we can learn an ε-BIC mechanism with few
samples, plugging it through the reduction to remove the ε
would cost us exponentially many samples in addition. Note
that our current use of these theorems is non-constructive:
we only use them to claim that the revenues achievable by
the optimal BIC and ε-BIC mechanisms are not far off. This
conclusion does not actually require running the reduction,
but rather simply observing that it could be run (more details
in the full paper).

When bidder valuations are drawn from a product distri-
bution, it seems conceivable (especially given our results),
that sample complexity polynomial in the number of items
should suffice. Indeed, if each bidders’ values are drawn
i.i.d., this is known due to exploitations of symmetry [26].
But subexponential sample complexity is not known to
suffice for any other restricted class of distributions, despite
remarkable recent progress in developing connections to
combinatorial Bernoulli factories [33]. We state below what
we consider to be the main open problem left by our work in
the context of this paper, but readers familiar with black-box
reductions in Bayesian mechanism design will immediately
recognize a corresponding open problem for the original
welfare-maximization setting studied in Hartline et al. [34],
Bei and Huang [35] that is equally enticing.

Open Problem 1. Given an ε-BIC auction for some product
distribution, even in an additive multi-item setting, is it
possible to transform it into a (precisely) BIC auction
with negligible (poly(ε)·poly(n,m,H)) revenue loss using
polynomially many samples from this product distribution?

The remainder of this paper is structured as follows.
In Section II, we formally present the model and setting.
In Section III, we formally state our results, which are

informally stated above as Theorem 1 and Corollaries 1
and 2. In Section IV, we overview the main ideas behind the
proof of Theorem 1. Our learning algorithm is presented in
Section V. In Section VI, we derive Corollaries 1 and 2. We
present some extensions in Section VII. In the full paper,
we also state and prove a result analogous to Theorem 1 for
DSIC auctions, using similar proof techniques. Full proofs
are given in the full paper.

II. MODEL AND PRELIMINARIES

The Decision Maker (Seller), Bidders, and Outcomes:
A single decision maker has the power to choose a social
outcome, such as who gets which good that is for sale, or
such as which pastime activities are offered in which of
the weekends of the upcoming year. There are n bidders
who have stakes in this outcome. (The decision maker will
be able to charge the bidders and will wish to maximize
her revenue.) The possible set of allowed outcomes is
denoted by X and can be completely arbitrary. A central
example is that of an m-parameter auction: the decision
maker is a seller who has m items for sale, and the set of
outcomes/allocations is X ⊆ [0, 1]n·m, where an allocation
~x = (xi,j)i∈[n],j∈[m] ∈ X specifies for each bidder i and
good j the amount of good j that bidder i wins. The
traditional multi-item setting is the special case with X =
Xmulti-item ,

{
(xi,j)i,j ∈ {0, 1}n·m | ∀j :

∑n
i=1 xi,j ≤ 1

}
,

while outcomes with fractional coordinates occur for ex-
ample in the canonical model of position auctions, where
smaller coordinates denote smaller click-through rates.

Values: Bidder i ∈ [n] has a valuation function vi(·)
over the set of possible outcomes X . This function is
parametrized by m values vi,1, . . . , vi,m (we will not explic-
itly write vi,~vi(·), but refer to the parameters implicitly for
ease of notation. Moreover, as vi(·) is completely determined
by vi,1, . . . , vi,m, we will sometimes simply refer to ~vi
as bidder i’s value, and to vi,j as bidder i’s value for
parameter j) and drawn from a given distribution such that:
• (Independent items) The vi,js are independent random

variables, drawn from distributions Vi,j which are all
supported in [0, H].

• (Lipschitz) There exists an absolute constant L, such
that if v′i,1, . . . , v

′
i,m is obtained from vi,1, . . . , vi,m by

modifying one of the vi,js by at most an additive ε,
then |vi(x)− v′i(x)| ≤ Lε for all x ∈ X .

For example, in the multi-item setting described above,
vi(x) =

∑m
j=1 xi,j · vi,j (and L = 1).7 An additive-up-

7This case is actually Lipschitz in a stronger sense: if v′i,1, . . . , v
′
i,m is

obtained from vi,1, . . . , vi,m by modifying one of the vi,js by at most
an additive ε, then |vi(~x) − v′i(~x)| ≤ |~x|1 · Lε for L = 1. We note
that using this stronger property (as well as other properties of the multi-
item setting such as monotonicity), our analysis (mutatis mutandis) can be
used to quantitatively improve the polynomial dependency of our sample
complexity on the parameters of the problems, however we do not follow
this direction in this paper. In general, in this paper we always choose
generality of results over tighter polynomials.
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to-k-items setting may also be easily captured using this
setting (again with L = 1), and so can even settings with
complementarities, such as a setting in which good 2j is
worth vi,j to bidder i iff bidder i also gets good 2j + 1
(and is otherwise worthless to bidder i). Since X can be
completely arbitrary (in particular does not have to be a
subset of [0, 1]n·m), we can most generally think of the vi,js
as parameters that capture the “relevant attributes” of each
bidder, such as affinity to action films, affinity to winter
sports, willingness to spend a lot of time in a pastime
activity, etc. The only requirement is that these attributes
are a “natural” parametrization in the sense that the utility
of the bidder from any given outcome x ∈ X smoothly
depends on (i.e., is Lipschitz in) each of them,8 and that
they are independently drawn.

We note that both properties above (independent items and
Lipschitz) together imply that the valuation of each bidder
for each outcome is bounded in [0,mLH].

Payments, Priced Outcomes, and Mechanisms: A pay-
ment specification p = (pi)i∈[n] specifies for each bidder i to
be charged pi. A priced outcome is a pair (x, p) of allocation
and payment specification. The utility of bidder i with
value vi(·) from priced outcome (x, p) is ui

(
vi, (x, p)

)
=

vi(x) − pi. An auction/mechanism is a function that maps
each valuation profile (vi,j)i∈[n],j∈[m] to a distribution over
priced outcomes. The seller’s expected revenue from a
mechanism µ is Ev∼×i,j Vi,j

[∑
i∈[n] pi(v)

]
, where p(v) is

the payment specification chosen by the mechanism for the
valuation profile v.

Truthfulness: An auction µ is individually
rational (IR) if the expected utility of a truthful
bidder is nonnegative at any valuation profile, i.e.:
E
[
uk
(
vk, µ(v)

)]
≥ 0 for every k ∈ [n] and v ∈ [0, H]n·m,

where the expectation is over the randomness of the
auction. For ε > 0, an auction µ is ε-dominant-
strategy incentive compatible (ε-DSIC) if truthful
bidding maximizes a bidder’s expected utility at
any valuation profile up to an additive ε, i.e.:
E
[
uk
(
vk, µ(v)

)]
≥ E

[
uk
(
vk, µ(v

′
k, v−k)

)]
− ε for

every k ∈ [n], v ∈ [0, H]n·m, and v′k ∈ [0, H]m, where
the expectation is once again over the randomness of the
auction. An auction is DSIC if it is 0-DSIC. An auction µ
is ε-Bayesian incentive compatible (ε-BIC) if truthful
bidding maximizes a bidder’s utility in expectation
over all valuations of the other bidders, up to an
additive ε, i.e.: Ev−k∼× i,j

i 6=k
Vi,j

[
uk
(
vk, µ(vk, v−k)

)]
≥

Ev−k∼× i,j
i 6=k

Vi,j

[
uk
(
vk, µ(v

′
k, v−k)

)]
− ε for every k ∈ [n]

and vk, v
′
k ∈ [0, H]m, where the expectation is both over

the valuations of the bidders other than k and over the
randomness of the auction. An auction is BIC if it is 0-BIC.

8This rules out such “tricks” as using bit-interleaving to condense the m
parameters into a single parameter.

Additional Notation: We will use the following addi-
tional notation in our analysis, where ε > 0:

• For v ∈ [0, H], we denote by bvcε the value of v,
rounded down to the nearest integer multiple of ε.

• We use [0, H]ε =
{
bvcε | v ∈ [0, H]

}
to denote the set

of integer multiples of ε in [0, H].
• For every i, j, we denote by bVi,jcε the distribution

of bvi,jcε for vi,j ∼ Vi,j .
Existing Tools: In our analysis, we will make use of

the following two theorems, which we state below in a
way that is adapted to the notation of our paper. The first
shows the optimal revenue over all ε-BIC auctions and the
optimal revenue over all BIC auctions are close (while this
is stated in Rubinstein and Weinberg [13] with respect to
multi-parameter settings with allocations in {0, 1}n·m, the
same proof holds verbatim for arbitrary outcome sets X):

Theorem 2 (Rubinstein and Weinberg [13];9 see also
Daskalakis and Weinberg [26]). Let D be any joint distri-
bution over arbitrary valuations, where the valuations of
different bidders are independent. The maximum revenue
attainable by any IR and ε-BIC auction for a given product
distribution is at most 2n

√
mLHε greater than the maxi-

mum revenue attainable by any IR and BIC auction for that
distribution.

The second is a Chernoff-style concentration inequality for
product distributions:

Theorem 3 (Babichenko et al. [28]; see also Devanur
et al. [4]). Let W1, . . . ,W` be discrete distributions. Let
S ∈ N. For every i, draw S independent samples from
Wi, and let W (S)

i be the uniform distribution over these
samples. For every ε > 0 and f : Π`

i=1 suppWi → [0, H],
we have that Pr

(∣∣E
Π`

i=1W
(S)
i

[f ] − EΠ`
i=1Wi

[f ]
∣∣ > ε

)
≤

4H
ε exp(− ε2S

8H2 ).

III. MAIN RESULTS

In this section, we formally state our main results, which
were informally presented as Theorem 1 and Corollaries 1
and 2 in the introduction. We start with our main result.

Theorem 4 (Main Result). For every ε, δ > 0
and for every η ≤ poly(n,m,L,H, ε), the sam-
ple complexity of learning an up-to-ε optimal IR and
η-BIC auction is poly(n,m,L,H, 1/ε, 1/η, log 1/δ). That

9If we denote by Rε the maximum expected revenue attainable by any
IR and ε-BIC auction for the bidders’ product distribution, and by R the
maximum revenue attainable by any IR and BIC auction for the same
distribution, then the result of Rubinstein and Weinberg [13] is that for any
η > 0, it is the case that R ≥ (1−η) ·(Rε− nε

η
). Choosing η =

√
ε

mLH

yields Theorem 2 as stated above, since Rε is trivially bounded from above
by the maximum possible sum of valuations, i.e., by nmLH .
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is, there exists a deterministic algorithm10 that given
poly(n,m,L,H, 1/ε, 1/η, log 1/δ) samples from each Vi,j ,
with probability 1−δ outputs an IR and η-BIC auction that
attains from×i,j

Vi,j expected revenue at most an additive ε
smaller than any IR and η-BIC auction.

The following corollary of our main result should be
contrasted with a result of Dughmi et al. [29], which
shows that finding an ε-optimal mechanism for a single
additive bidder with correlated item distributions requires
exponentially many samples.

Theorem 5 (Single Bidder). When there is n = 1 bidder, for
every ε, δ > 0, the sample complexity of learning an up-to-ε
optimal IR and IC11 auction is poly(n,m,L,H, 1/ε, log 1/δ).
That is, there exists a deterministic algorithm12 that given
poly(n,m,L,H, 1/ε, log 1/δ) samples from each Vi,j , with
probability 1−δ outputs an IR and IC auction that attains
from ×i,j

Vi,j expected revenue at most an additive ε
smaller than any IR and IC auction.

The following corollary of our main result unifies and
even somewhat extends the state-of-the-art results for single-
parameter (m = 1) revenue maximization. To state it we
restrict ourselves to the setting where revenue maximization
has been solved by Myerson [1]: assume that X ⊆ [0, 1]n

and that vi(x) = vi · xi.13

Theorem 6 (Single-Parameter). In an m = 1-parameter
setting with X ⊆ [0, 1]n and vi(x) = vi · xi, for every
ε, δ > 0, the sample complexity of efficiently learning an up-
to-ε IR and DSIC auction is poly(n,m,L,H, 1/ε, log 1/δ).
That is, there exists a deterministic algorithm with
running time poly(n,m,L,H, 1/ε, log 1/δ) that given
poly(n,m,L,H, 1/ε, log 1/δ) samples from each Vi,j ,
with probability 1− δ outputs an IR and DSIC auction
that attains from×i,j

Vi,j expected revenue at most an
additive ε smaller than any IR and BIC auction.

IV. MAIN RESULT PROOF OVERVIEW

In this section we roughly sketch our learning algorithm
and present each of the main ideas behind its analysis,
by presenting a proof overview structured to present each
of these ideas separately. The proof overview is given in
this section only for an additive multi-item setting, and

10Recall that this result is information-theoretic and not computationally
efficient (by necessity, without resolving major open problems), so our
decision maker (seller) is computationally unbounded, and we allow the
algorithm to make calls to any deterministic oracle that has no access to
any Vi,j . In particular, we assume access to an oracle that can solve the
revenue maximization problem on any precisely given V ′i,j of finite support.

11Recall that for a single bidder, the notions of BIC and DSIC coincide.
12See Footnote 10.
13This setting is slightly more general than the state-of-the-art single-

parameter results, that assume X ⊆ {0, 1}n and/or the special setting of
position auctions [5], [7]. As noted in the introduction, Gonczarowski and
Nisan [7] explicitly state that their techniques cannot accommodate arbitrary
X ⊆ [0, 1]n and leave this question (which we successfully resolve) open.

some elements of the proof are omitted or glossed over
for readability. The full proof, which contains all omitted
details and applies to a general arbitrary Lipschitz setting,
and in which the main ideas that are surveyed in this section
separately are quite intermingled, is given in the full paper.14

Our learning algorithm is similar in nature to the one
presented in Devanur et al. [4] for certain single-parameter
environments, however the analysis that we will use to show
that it does not overfit the samples is completely different
(even for single-parameter environments, where our analysis
holds for arbitrary allocation constraints). Recall that our
result is (necessarily) information-theoretic and not compu-
tationally efficient. Therefore, some steps in the algorithm
perform operations that are not known to be performable in
poly-time (but can certainly be performed without access to
any Vi,j). In particular, our algorithm will solve an instance
of a Bayesian revenue maximization problem for a precisely
given input of finite support (step 2).

Algorithm: We start with S (to be determined later)
independent samples from each Vi,j . Our algorithm roughly
proceeds as follows:

1) For each item i and good j, round all samples
from Vi,j down to the nearest multiple of ε. Denote
the uniform distribution over these rounded samples
by Wi,j .

2) Find an IR and O(ε)-IC (see below) multi-item auc-
tion that maximizes the revenue from the product of
the rounded empirical distributions Wi,j . Denote this
auction by µ.

3) Return the auction µε, which on input ~v, rounds down
all actual bids to the nearest multiple of ε, b~vcε, and
allocates and charges payments according to the output
of µ(b~vcε) when run on these rounded bids.

We start by showing that if in step 2 of our algorithm we
take an IR and O(ε)-DSIC auction that maximizes the rev-
enue from the product of the rounded empirical distributions,
then there exists S = poly(n,m,H, 1/ε, log 1/δ) such that
the auction µε output by our algorithm is O(ε)-DSIC and
its revenue from×i,j

Vi,j is, with probability at least 1−δ,
up-to-O(ε)-close to the maximum revenue attainable from
×i,j

Vi,j by any DSIC auction. (The formal statement and
full proof are given in the full paper.) We note that the
auction output by the algorithm is indeed O(ε)-DSIC, since
the output µ in step 2 is O(ε)-DSIC, and the rounding of
the actual bids as defined in step 3 only loses another mε.15

14The somewhat less involved proof for DSIC auctions that is sketched
in this section as an intermediary proof is also given in the full paper, both
since we find that result interesting in its own right, and to allow interested
readers to familiarize themselves with that proof before diving into the
more involved proof for BIC auctions.

15The astute reader will notice that mε /∈ O(ε). As all our bounds are
polynomial in m, 1/ε anyway, this is immaterial, and one example of a
detail that we glossed over in this section in the interest of cleanliness, as
promised.
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Uniform Convergence of the Revenue of all Possible
Output Mechanisms: Note that for every i, j, each rounded
sample from step 1 of the algorithm is independently
distributed according to bVi,jcε. The main challenge is in
showing that the resulting auction gives up-to-O(ε) opti-
mal revenue not only on the rounded empirical distribu-
tions×i,j

Wi,j , but also on the rounded true distributions

×i,j
bVi,jcε. That is, the main challenge is in showing

that no overfitting occurs, in the absence of any structural
properties that we can exploit for the mechanisms that are
optimal (or up-to-O(ε) optimal) for×i,j

Wi,j .
This is the point where our approach makes a sharp

departure from prior works. Prior work deems this task to
be hopeless, and proceeds by proving structural results on
optimal mechanisms for restricted domains. We circumvent
this by instead simply counting the number possible inputs
we will ever query in step 2, and observing that the number
of mechanisms over which we have to obtain uniform con-
vergence is at most this number. A crucial observation is that
while we do have to consider more and more mechanisms as
the number of samples S grows, the number of mechanisms
that we have to consider grows moderately enough so as to
not eclipse our gains from increasing the number of samples
that we take. For this argument to hold, it is essential that
our distributions are product distributions.

Let V be the set of all product distributions×i,j
W ′i,j

where each W ′i,j is the uniform distribution over some
multiset of S values from [0, H]ε. Let M be the set of all
mechanisms returned by step 2 of the algorithm for some
distribution×i,j

W ′i,j ∈ V . At the heart of our analysis,
and of this part of our analysis in particular, is the
observation that |V| ≤ (S + 1)n·m·d

H/εe. Crucially,
this expression has S only in the base and not in the
exponent. Indeed, for every×i,j

W ′i,j ∈ V , for every i, j,
and for every integer multiple of ε in [0, H] (there are dH/εe
many such values), the probability of this value in W ′i,j
can be any of the S + 1 values 0, 1/S, . . . , 1. Therefore,
|M | ≤ (S + 1)n·m·dH/εe.

We will choose S so that with probability at least 1−δ,
it simultaneously holds for all mechanisms µ ∈M that

|Rev×i,j Wi,j
(µ)− Rev×i,jbVi,jcε(µ)| ≤ ε. (1)

To this end, we will use a Chernoff-style concentration
bound (Theorem 3) for product distributions, which when
applied to our setting shows that for each auction separately
Equation (1) is violated with probability exponentially small
in ε2S

m2H2 . So, to have Equation (1) hold with probability
at most 1− δ for all auctions in M simultaneously, we
choose S so that the violation probability for each auction
separately is at most δ/|M |, and use a union bound. Since
|M | ≤ (S + 1)n·m·dH/εe, we have that it is enough to
take S such that ε2S

m2H2 is of order of magnitude at least

log |M |/δ = log (S+1)n·m·d
H/εe

δ ≈ log 1/δ + n ·m · H/ε logS,

which is clearly possible by taking a suitable S that is
polynomial in n, m, H , 1/ε, and log 1/δ. So, taking a number
of sample of this magnitude gives that with probability
at least 1− δ, Equation (1) simultaneously holds for all
mechanisms in M and so the mechanism output by step 2
of the algorithm gets up-to-O(ε) the same revenue on the
product of the rounded empirical distributions×i,j

Wi,j as
it does on the product of the rounded true distributions
×i,j

bVi,jcε. So, the revenue that the mechanism µε output
by (step 3 of) the algorithm attains from×i,j

Vi,j is identical
to the revenue that the mechanism µ output by step 2 of the
algorithm attains from×i,j

bVi,jcε, which is up-to-O(ε) the
optimal revenue attainable from×i,j

Wi,j .
Revenue Close to Optimal: Our next task is to show

that with high probability the optimal revenue attainable
from×i,j

Wi,j by any O(ε)-DSIC auction is up-to-O(ε)

the same as the optimal revenue attainable from×i,j
Vi,j

by any DSIC auction, which would imply that the revenue
that µε attains from×i,j

Vi,j is close to optimal, as required.
Let OPT be the DSIC auction that maximizes the revenue
(among such auctions) in expectation over×i,j

Vi,j . At
the heart of this part of our analysis is the fact that
while our algorithm cannot hope to find OPT, we can
nonetheless carefully reason about it in our analysis, as
it is nonetheless fixed and well-defined (in particular, it
does not depend on the drawn samples). Let OPTε be
the mechanism defined over×i,j

bVi,jcε as follows: for each
bidder i and item j, let wi,j be the input bid of bidder i
for item j (a multiple of ε), and replace it by a bid vi,j
independently drawn from the distribution Vi,j conditioned
upon being in the interval [wi,j , wi,j+ε); the auction OPTε
allocates and charges payments according to the output of
OPT when run on these drawn replacement bids. Obviously,
the auction OPTε is an O(ε)-DSIC auction whose revenue
from×i,j

bVi,jcε is identical to that of the auction OPT

from×i,j
Vi,j , i.e., to the optimal revenue from×i,j

Vi,j ,
so it is enough to show that the revenue of the auction
OPTε from×i,j

bVi,jcε and from×i,j
Wi,j is the same

up-to-O(ε) with high probability, that is, that Equation (1)
also holds for the mechanism OPTε with high probability.
To do so, we modify the definition of the set M to also
include the (well-defined even prior to sampling, despite
being unknown to our algorithm) mechanism OPTε — since
the order of magnitude of |M | does not change, the order of
magnitude of the number of samples required to guarantee
that Equation (1) holds for all auctions in M (including
OPTε) does not change.

Bayesian Incentive Compatibility: We conclude our
proof overview by adapting the proof to the more delicate
BIC notion of incentive compatibility, thus showing that if
in step 2 of our algorithm we take an O(ε)-BIC (rather
than O(ε)-DSIC) and IR auction that maximizes the revenue
from the product of the rounded empirical distributions,
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then there exists S = poly(n,m,H, 1/ε, log 1/δ) such that
the auction µε output by our algorithm is, with probability
at least 1 − δ, an O(ε)-BIC auction whose revenue from
×i,j

Vi,j is up-to-O(ε)-close to the maximum revenue at-
tainable from×i,j

Vi,j by any BIC auction (and therefore,
by Theorem 2, up-to-O(

√
ε)-close to the revenue attainable

from this distribution by any O(ε)-BIC auction)16. The
challenge here is that (approximate) BIC is a distribution-
dependent property of a mechanism (as opposed to DSIC,
which is a distribution-agnostic incentive compatibility no-
tion). Indeed, examining our analysis above with (ε-)DSIC
replaced by (ε-)BIC, we note that the resulting analysis falls
short of carrying through in two points: it is unclear why
OPTε is O(ε)-BIC not only with respect to×i,j

Vi,j but
also with respect to×i,j

Wi,j , and it is unclear why any
mechanism that can be output by step 2 of our algorithm
is O(ε)-BIC not only with respect to×i,j

Wi,j but only
with respect to×i,j

Vi,j . At the heart of this part of our
analysis is the observation that the set of all interim
expected utilities, of all bidders’ possible types, from all
possible reported types, in all mechanisms17 on the one
hand is comprised of a small-enough number of random
variables to still enable uniform convergence, and on the
other hand contains sufficient information to show that
incentive constraints do not deteriorate much. Concretely,
we will choose S so that with probability at least 1 − δ,
simultaneously for all mechanisms in M (including OPTε)
not only does Equation (1) hold, but also the following holds
for every bidder k ∈ [n] and values vk, v′k ∈ [0, H]mε :

|Ev−k∼× i,j
i 6=k

Wi,j

[
uk
(
vk, µ(v

′
k, v−k)

)]
−

− Ev−k∼× i,j
i 6=k
bVi,jcε

[
uk
(
vk, µ(v

′
k, v−k)

)]
| ≤ ε. (2)

We note that for every mechanism µ, we require that
Equation (2) hold for n ·dH/εe2m distinct combinations of
of k ∈ [n] and vk, v

′
k ∈ [0, H]mε . Crucially, this number

does not depend on S. So, the number of instances of
Equation (2) that we would like to hold simultaneously
with high probability is |M | · n ·dH/εe2m, and so we have
|M | · (1+n·dH/εe2m) ≤ (1+n·dH/εe2m) · (S+1)n·m·dH/εe

instances of either Equation (1) or Equation (2) that we
would like to hold simultaneously with high probability.18

As this number still has S only in the base and not in the
exponent, we can proceed as above to guarantee this with
high probability using only a polynomial number of samples.

16Theorem 2 in fact allows us to also reduce to a cleaner oracle, which
finds an optimal BIC auction rather than an optimal O(ε)-BIC auction, in
Section V.

17The set of all such interim expected utilities for a single mechanism
is sometimes referred to as the reduced form of the mechanism.

18A somewhat similar idea appeared in Cai et al. [27], albeit without
exploiting independence across items.

V. LEARNING ALGORITHM

In this section, we give the fully detailed description of
the learning algorithm from our main result, Theorem 4.
The algorithm is described in Figure 1, and the proof of the
correctness of the claims in that figure, whose overview was
given in Section IV, is given in the full paper.

Function EmpiricalOptimize(H,X, ε, δ, (vsi,j)
s∈[S]
i∈[n],j∈[m]):

Input: For every i ∈ [n], j ∈ [m], (vsi,j)s=1 is a
sequence of
S = Õ

(
n2m2L2H2

ε2
·
(
log 1/δ + nmH

ε

))
samples

from Vi,j
Output: With probability 1−δ, an IR and (3mε)-BIC

mechanism for×i,j
Vi,j , defined

over [0, H]n·m with allocations in X , whose
expected revenue from×i,j

Vi,j is up to an

additive
(
(2+n)mε+ 2nm

√
7LHε

)
smaller

than that of any IR and (3mε)-BIC mechanism
for×i,j

Vi,j with allocations in X
for i ∈ [n], j ∈ [m] do

for s ∈ [S] do
wsi,j ←− bvsi,jcε

end
Wi,j ←− the uniform distribution over (wsi,j)

S
s=1

end
/* See definition below */
µ←− OptimizationOracle(H, ε, (Wi,j)i∈[n],j∈[m])
return The mechanism that for input (vi,j)i∈[n],j∈[m]

outputs µ
((
bvi,jcε

)
i∈[n],j∈[m]

)
Function OptimizationOracle(H,X, ε, (Wi,j)i∈[n],j∈[m]):

Input: For every i ∈ [n], j ∈ [m], Wi,j is a distribution
over [0, H]ε

Output: An IR and BIC mechanism for×i,j
Wi,j ,

defined over [0, H]n·mε with allocations in X ,
which maximizes the expected revenue from
×i,j

Wi,j among all IR and BIC mechanisms
for×i,j

Wi,j with allocations in X
µ←− an IR and BIC mechanism for×i,j

Wi,j (defined
over×i,j

suppWi,j) with allocations in X ,
which maximizes the expected revenue from
×i,j

Wi,j among all such mechanisms
return The mechanism obtained by extending µ to be

defined over (vi,j)i,j ∈ [0, H]n·mε as follows: for
every k ∈ [n] s.t. vk,j /∈ suppWk,j for some
j 6= [m], replace the entire bid vector
vk = (vk,j)j∈[m] of bidder k with a bid vector
v′k = (v′k,j)j∈[m] ∈ supp×j

Wk,j that
maximizes
Ev′−k

∼×i,j:i6=k Wi,j

[
uk

(
vk, µ(v

′
k, v
′
−k)

)]
Figure 1. Empirical Multi-Parameter Up-to-ε BIC Revenue Maximization.

VI. FROM APPROXIMATE TO EXACT INCENTIVE
COMPATIBILITY

In this section, we derive sample complexity results for
exact incentive compatibility for the special cases of a single
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bidder (Theorem 5) or a single good / single-parameter
setting (Theorem 6). As mentioned in the introduction,
whether this can also be done for more general settings
remains an open question.

A. One Bidder

In this section, we will prove Theorem 5. For a single
bidder, the following theorem, which to the best of our
knowledge first implicitly appeared in Balcan et al. [36],
where it is attributed to Nisan,19 provides an ε-IC to IC
reduction with negligible revenue loss.

Theorem 7 (Nisan, circa 2005). Let µ be an IR and ε-
IC20 mechanism for a single bidder. Modifying each possible
priced outcome by multiplying the payment in that priced
outcome by 1 −

√
ε and letting the bidder choose the

(modified) priced outcome that maximizes her utility yields
an IR and IC mechanism µ′ with expected revenue at least
(1−
√
ε) · (Rev(µ)−

√
ε).

For completeness, we provide a proof of this theorem in
the full paper. The idea is that discounting more expensive
priced outcomes more heavily makes sure that incentives do
not drive the buyer toward a much cheaper priced outcome.
More concretely, due to the auction being only ε-IC, the
utility of a buyer from choosing a cheaper priced outcome
can be higher by at most ε. Since for any priced outcome
whose price is cheaper by more than a

√
ε compared to

the buyer’s original priced outcome, the given discount is
smaller by more than

√
ε
2
= ε, this smaller discount more

than eliminates any potential utility gain due to choosing the
cheaper priced outcome, so such a cheaper priced outcome
would not become the most-preferred one. Applying The-
orem 7 to the auction output by the algorithm of Figure 1
yields Theorem 5.

B. Single-Parameter Settings

In this section, we will prove Theorem 6. The algorithm
presented in Section V constitutes a black-box reductions
from ε-BIC revenue maximization from samples to BIC
revenue maximization from given distributions. As noted in
the introduction, the latter are mostly unsolved for more
than one good. For a single good, however, the problem of
DSIC/BIC revenue maximization was completely resolved
by the seminal work of Myerson [1] (who, in particular,
showed that the optimal BIC mechanism is DSIC), and

19 It appears there and in following papers [8], [29], [37]–[39] as part
of a two-step reduction sometimes called “nudge and round” (this is the
“nudge” part), which reduces the menu size of a single-bidder auction with
negligible revenue loss. To the best of our knowledge, the first reference
to this argument as a general ε-IC to IC reduction rather than as part
of a “nudge and round” operation (where it fixes IC issues resulting from
rounding) is in Daskalakis and Weinberg [26], who also attribute it to Nisan
following Chawla et al. [8], who in turn attribute it to Nisan following
Balcan et al. [36].

20Recall once again that for a single bidder, the notions of BIC and DSIC
coincide.

the computation complexity of the solution for discrete
distributions was shown by Elkind [30] to be polynomial.

Definition (Myersonian Auction [1]). An n-bidder Myer-
sonian auction (for valuations in [0, H]) is a tuple (φi)i∈N ,
where for every i ∈ [n], φi : [0, H]→ R is a nondecreasing
function called the ironed virtual valuation of bidder i. The
chosen outcome is x ∈ X that maximizes

∑
i∈[n] xi ·φi(vi),

with ties broken in a consistent manner. The payment is
defined by the payment identity of Myerson [1], which
guarantees that the auction is IR and DSIC.

Theorem 8 ([1]). For every product distribution×n

i=1
Wi,

there exists a (DSIC) Myersonian auction (φi)
n
i=1 that

attains maximum revenue from×n

i=1
Wi among all IR and

BIC auctions. Moreover, for every i ∈ [n], the ironed virtual
valuation φi depends only on Wi.

Theorem 9 ([30]). Let S ∈ N. There exists an algorithm
that runs in time poly(S), such that given a discrete
distribution W with support of size at most S, outputs a
nondecreasing function φ : suppW → R, such that for
every product×n

i=1
Wi of discrete distributions each having

support of size at most S, the (DSIC) Myersonian auction
(φi)i∈N (where φi is the output of the algorithm given Wi)
maximizes the expected revenue from×n

i=1
Wi among all

IR and BIC auctions.

Plugging21 Theorem 9 into the algorithm of Figure 1
brings us closer (by making the algorithm efficient) to
proving Theorem 6, however seems to still result in an
ε-DSIC (rather than precisely DSIC) auction. Indeed, while
the auction output by OptimizationOracle is DSIC, it
seems that the auction output by EmpiricalOptimize is
only O(mε)-DSIC. To complete the proof of Theorem 6,
we note that the latter is in fact exactly DSIC in this case.
Indeed, its allocation rule is monotone, and it satisfies the
payment identity of Myerson [1] for every bidder.

VII. EXTENSIONS

A. On Computational Efficiency

As mentioned above, it is currently not known how to
efficiently implement the optimization oracle, outputting
an up-to-O(ε)-optimal auction, as used in our algorithm.
Nonetheless, there has been quite some work on efficiently
finding auctions with weaker revenue guarantees with re-
spect to optimal, such as guaranteeing some constant fraction
of the optimal revenue. As the structured argument of our
analysis provides a black-box reduction from BIC-revenue-
maximization given a full distributions description to ε-BIC-
revenue-maximization from samples, we can plug in any

21Extending the mechanism µ returned by the optimizer in
OptimizationOracle to be defined over all of [0, H]n·mε as follows,
though (following Gonczarowski and Nisan [7]): for every i ∈ [n]
and j ∈ [m] s.t. vi,j /∈ suppWi,j , replace vi,j with max{wi,j ∈
suppWi,j | wi,j ≤ vi,j}.
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such algorithm into our analysis (in lieu of the optimiza-
tion oracle) to obtain a learning algorithm with matching
computational complexity and revenue degradation:

Theorem 10 (“Meta Theorem”: Black-Box Reduction
for Efficient Up-to-Constant Guarantees). If there ex-
ists a polynomial-time algorithm for Bayesian revenue-
maximization up to a constant factor C given an ex-
plicitly specified finite product distribution, then for ev-
ery ε, δ > 0 and for every η ≤ poly(n,m,L,H, ε),
there exists a polynomial-time algorithm that given
poly(n,m,L,H, 1/ε, 1/η, log 1/δ) samples from each Vi,j ,
with probability at least 1− δ outputs an IR and η-BIC
auction that attains from×i,j

Vi,j expected revenue at most
an additive ε smaller than a C fraction of that of any IR
and η-BIC mechanism.

B. Partial Correlations

In some settings, there could be partial correlations be-
tween the distributions of the values of each bidder for the
various goods. Our construction and analysis can also be
modified to analyze such settings, to obtain sample bounds
that are polynomial in the independent dimensions. To give
a few examples:
• If there are correlations across values of different goods

for the same bidder, but different bidders’ valuations are
independent, then our upper bound for |M | becomes
(S + 1)m·(dH/εe)

n

, and so our analysis would yield
sample complexity that is polynomial in the number
of bidders (as our upper bound of |M | in this case is
still singly exponential in the number of bidders) and
exponential in the number of goods (as our upper bound
of |M | in this case is doubly exponential in the number
of goods).

• If for each bidder i the values of every two goods
2j, 2j+1 ∈ [m] are correlated, but are independent of
the values of these goods for any other bidder, and of
the values of any other good for any bidder, then our
upper bound for |M | becomes (S + 1)n·m/2·(dH/εe)

2

,
and so our analysis still yields sample complexity that
is polynomial in the both the number of bidders and
the number of goods (as our upper bound of |M | in
this case is still singly exponential in both parameters).
This is an example for a weaker form of correlation for
which our analysis can still yield sample complexity
that is polynomial in all parameters.
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