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Abstract—We give a protocol for producing certifiable ran-
domness from a single untrusted quantum device that is
polynomial-time bounded. The randomness is certified to be
statistically close to uniform from the point of view of any
computationally unbounded quantum adversary, that may
share entanglement with the quantum device. The protocol
relies on the existence of post-quantum secure trapdoor claw-
free functions, and introduces a new primitive for constraining
the power of an untrusted quantum device. We then show how
to construct this primitive based on the hardness of the learning
with errors (LWE) problem.

The randomness protocol can also be used as the basis for
an efficiently verifiable “quantum supremacy” proposal, thus
answering an outstanding challenge in the field. experiments.

Keywords-randomness; quantum information; cryptography

I. INTRODUCTION

In this paper we propose solutions to two basic tasks:

how to generate certifiably random strings from a single
untrusted quantum device (also referred to as a prover), and

efficient verification of quantum supremacy. The setting we

consider is one where the quantum device is polynomial-

time bounded but untrusted, and the verifier is entirely

classical and also polynomial-time bounded. The peculiarity

of this setting is that it allows the verifier to leverage post-

quantum cryptography, i.e. the existence of cryptographic

primitives that can be implemented efficiently on a classical

computer but that cannot be broken by any efficient quantum

computer.

There has been considerable research into certifiable

quantum random number generation [Col06], [PAM+10],

[FGS11], [PM11], [VV11], [MS16], [BKG+18]. However,

all prior works providing verifiable guarantees have focused

on the setting where there are multiple quantum devices

that share entanglement, and where the randomness cer-

tification relies crucially on the violation of a Bell in-

0A full version of this extended abstact can be found at [BCM+18].

equality. By contrast, in the setting that we study there

is a single polynomial-time bounded quantum device, and

the guarantee we seek is that provided the device is un-

able to break the post-quantum cryptographic assumption

during the execution of the protocol, then the output of

the protocol must be statistically indistinguishable from a

uniformly random sequence of bits, to any computationally

unbounded adversary that may share prior entanglement

with the computationally bounded device. This information-

theoretic guarantee, the same guarantee as that offered in

the aforementioned works [VV11], [MS16], is stronger than

computational pseudo-randomness (that is easily achievable

under standard cryptographic assumptions, since the verifier

starts with a short random seed).

The specific cryptographic primitive we rely on is the

existence of a post-quantum secure trapdoor claw-free (in

short, TCF) family of functions f : {0, 1}n → {0, 1}m,

the post-quantum analog of a notion introduced by Gold-

wasser, Micali and Rivest in the context of digital signatures

[GMR84]. A TCF is a 2-to-1 function f that satisfies the

following properties: f (x) is efficiently computable on a

classical computer, and if f (x) = y, then there is a unique

x′ �= x such that f (x′) = y. Moreover, with knowledge

of a secret trapdoor it is possible to efficiently (classically)

compute x and x′ from y, but without the trapdoor there

is no efficient quantum algorithm that can compute such a

triple (x, x′, y), for any y.

By contrast, a quantum algorithm can simultaneously hold

an image y, as well as a superposition 1√
2
(|x〉 + |x′〉)

over two pre-images of y, simply by evaluating f on a

uniform superposition over all inputs and measuring the

image y. At this point, measuring the quantum state in

the standard basis will yield a random pre-image, x or

x′. This is not any stronger than a classical device could

do, by first sampling a random x and then computing

y = f (x). However, the quantum device can do something
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different from directly measuring a pre-image. Instead, the

device can perform Fourier sampling (Hadamard transform

followed by a measurement), which yields a random n-bit

string d : d · (x ⊕ x′) = 0, thereby revealing some joint

information about both pre-images of y.

The ability to perform either of these tasks, identifying

a pre-image or sampling an equation, but not both, seems

to be a unique quantum capability. But of course a classical

verifier cannot access the inner workings of the quantum

device: from her viewpoint the device is an untrusted black

box that outputs y, and then either a pre-image x, or an

equation d. However, assuming the verifier knows the secret

trapdoor, she can efficiently compute both pre-images x
and x′, and verify that indeed d · (x ⊕ x′) = 0. At a

high level, the consideration of a trapdoor family restores

some symmetry between the quantum prover (the untrusted

quantum device) and the classical verifier, by providing

a primitive which allows the quantum capabilities of the

prover to play a useful role while at the same time giving

the classical verifier a handle, namely the ability to compute

both x and x′, that the prover does not have access to.

One might now conjecture that for a generic TCF (e.g.

modeled as a random oracle), if the output of any efficient

quantum device passes this test with non-negligible advan-

tage over 1
2 , then the pair y, d returned in the equation test

must have high min-entropy. Such a strong statement would

immediately yield a randomness certification protocol. The

difficulty in showing such a statement is that both y and d
may be adaptively and adversarially chosen. While we do

not know how to prove this, we are still able to design and

analyze a simple protocol, that can be based on any TCF

family with suitable cryptographic properties, and succeeds

in certifiable randomness expansion from a single untrusted

quantum (polynomial-time) device.

We will refer to protocol described above as a single round

test, and our certified randomness expansion protocol will

consist of a large number of such rounds. To facilitate the

analysis of the protocol, we elaborate on a specific TCF

construction in [Mah17a] based on the learning with errors

problem (LWE). Specifically, we achieve a construction of

TCF that has additional security guarantees, including an

“adaptive hardcore bit” condition that is explained below.

This condition helps in going beyond the analysis of a single

round of our randomness-generation protocol (this analysis

can be performed based on a more generic requirement

for the TCF) to guarantee randomness accumulation across

multiple rounds, a more stringent requirement. For clarity,

in this paper we refer to the specific (relaxed) kind of TCF

that we rely on as an NTCF, or post-quantum secure noisy

trapdoor claw-free family. We give a construction of an

NTCF that rests on the hardness of the Learning With Errors

(LWE) problem, introduced by Regev [Reg05], with slightly

super-polynomial noise ratio, against quantum polynomial-

time attacks with nonuniform quantum advice (where the

state of the art classical and quantum complexity scale ex-

ponentially with the dimension). This construction is similar

to the one used in [Mah17a], albeit with some changes

in parameters that allow us to prove the adaptive hardcore

bit statement. Roughly, it asserts that it is computationally

intractable to sample from any distribution on (y, x, d, b)
such that f (x) = y and Pr(b = d · (x + x′)) ≥ 1/2+ ε for

non-negligible ε.

We now note that the adaptive hardcore bit statement

already has an interesting consequence: passing the single

round test constitutes a proof of quantumness of the device.

This is because there cannot be any efficient classical

algorithm that can reliably answer a random challenge,

“pre-image” or “equation”, since such an algorithm could

be “rewound” to simultaneously answer both challenges,

thus contradicting the adaptive hardcore bit property. This

has implications for an important milestone in the experi-

mental realization of quantum computers, namely “quantum

supremacy”: a proof that an (untrusted) quantum comput-

ing device performs some computational task that cannot

be solved classically without impractical resources. While

quantum supremacy could be achieved, in principle, by

demonstrating quantum factoring, the latter requires quan-

tum resources well beyond the capability of near term ex-

periments. Instead current proposals for quantum supremacy

are based on sampling problems (see e.g. [HM17] for a

recent survey). The major challenge for these proposals is

verifying that the quantum computer did indeed sample from

the desired probability distribution, and indeed all existing

proposals rely on exponential time classical algorithms for

verification. By contrast, our single round test provides a

proof of quantumness and can be carried out by a classical

verifier in polynomial time. This proposal for quantum

supremacy seems promising from a practical viewpoint —

indeed, even using off-the-shelf bounds for LWE-based

cryptography suggests that a protocol providing 50 bits of

security could be implemented with a quantum device of

around 2000 qubits (see e.g. [LP11]). It would be worth

exploring whether there are clever implementations of this

scheme that can lead to a quantum supremacy protocol in

the 200− 500 qubit range. Our protocol is robust to a device

that only successfully answers the verifier’s challenges a

sufficiently large, but constant, fraction of the time; it would

be interesting to explore whether such a device could be

implemented without resorting to general fault-tolerance

techniques.

Using the single round test as a building block for certified

randomness expansion requires a deeper analysis. Let us

focus on a single bit of information that the device outputs

in the test: whether the pre-image is x or x′ and whether the

equation d satisfies d · (x + x′) = 0 or not. We are able to

characterize the quantum state and quantum measurements

for this task that are derived from the measurements of any

efficient device that passes the single round test. Specifically,
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we show that the state and measurements of the device

are close to the following: the device starts with a qubit

initialized to |0〉, which it measures in the standard basis

when the challenge is C = 0 and in the Hadamard basis

when the challenge is C = 1. Note that the fact that an

efficient quantum device cannot break the cryptographic

assumption has thus been translated into a characterization

of the state and actions of the quantum device, which further

implies that the output of the device in this single round

must contain almost a bit of true (information theoretic)

randomness.

Achieving certifiable randomness expansion requires an

analysis of a protocol with a long sequence of single

round tests, which we describe in the next section. We

note that while assuming that LWE is hard for polynomial-

time adversaries already implies polynomial randomness

expansion, we can stretch the parameters further to achieve

exponential randomness expansion by assuming that the

problem remains hard even against quantum sub-exponential

time adversaries, which is still consistent with the current

state of the art.

Recently Aaronson [Aar18] discovered a different connec-

tion between quantum supremacy proposals and randomness

generation Aaronson’s scheme has the advantage of being as

easy to implement as the supremacy proposal. Unfortunately,

it also faces the same limitation in terms of verifiability

as existing supremacy proposals, with the verification time

scaling exponentially with the number of generated bits.

The idea of using a TCF as a basic primitive in inter-

actions between an efficient quantum prover and a classi-

cal verifier has been further developed in recent work by

Mahadev [Mah17b], giving the first construction of a quan-

tum fully homomorphic encryption scheme with classical

keys. In further follow-up work, Mahadev [Mah18] shows

a remarkable use of a NTCF family with adaptive hardcore

bit. Namely, that the NTCF can be use to certify that a

prover measures a qubit in a prescribed basis (standard or

Hadamard). This allows to achieve single prover verifiability
for quantum computations using a purely classical verifier

(but relying on computational assumptions).

Independently of this work, a construction of trapdoor

one-way functions with second pre-image resistance based

on LWE was recently introduced in [CCKW18], where it is

used to achieve delegated computation in the weaker honest-

but-curious model for the adversary (i.e. without soundness

against provers not following the protocol). The family of

functions considered in [CCKW18] is not sufficient for our

purposes, as it lacks the essential adaptive hardcore bit

property.

We believe that the technique of constraining the power

of a quantum device using NTCFs, and with the adaptive

hardcore bit put forth in this work promises to be a powerful

tool for the field of untrusted quantum devices.

Overview of results and proof techniques

We provide a high level description of the main compo-

nents of our protocol and the proof of security.

A single round of the protocol: test of quantumness:
At the computational heart of our protocol is the single

round test. In each round, the device is first required to

output an element y in the range of NTCF f . The classical

verifier then issues one of two challenges, C = 0 (“pre-

image”) or C = 1 (“equation”). The device responds by

providing either a nontrivial d : d · (x ⊕ x′) = 0 1 or

a valid pre-image for y, respectively. Both conditions can

be efficiently checked by the verifier, the equation check

requires the verifier to use the trapdoor for f . An honest

quantum device can accomplish this by creating a uniform

superposition on all x, computing f in superposition, and

then measuring y = f (x). This projects the x-register into

the superposition (1/
√

2)|x〉 + (1/
√

2)|x′〉, where x, x′
are the preimages of y. Now measuring the x-register in

the standard basis yields a random preimage x or x′, and

measuring it in the Hadamard basis yields a random equation

d : d · (x⊕ x′) = 0.

The fact that passing the single round test constitutes a

proof of quantumness of the device relies on the adaptive

hardcore bit property, which we sketch here and explain in

greater detail later. Roughly, it asserts that it is computation-

ally intractable to sample from any distribution on (y, x, d, b)
such that f (x) = y and Pr(b = d · (x + x′)) ≥ 1/2 + ε
for non-negligible ε. This property implies that any efficient

device that can reliably answer a random challenge (equation

or pre-image) must be quantum. This is because any classical

algorithm could be “rewound” to simultaneously answer

both challenges, which is impossible by the adaptive hard

core predicate property.

At the heart of certifiable randomness generation lies the

claim that if an efficient device passes the single round test,

then with high probability the state of the device and its

measurements, up to some coarse-graining, are close to the

following: it starts with a qubit initialized to |0〉, which it

measures in the standard basis when the challenge is C = 0
and in the Hadamard basis when the challenge is C = 1.

This characterization of the quantum state of the device

and its measurements is where the computational bound

on the device translates into true randomness rather than

pseudorandomness.

To see how the proof proceeds, notice that in a single

round the device must make one of two measurements: either

a “pre-image” measurement, or an “equation” measurement.

The “pre-image” measurement can be treated as a projection

into one of two orthogonal subspaces corresponding to the

two pre-images x, x′ for the element y that the device has

1The exact condition for the equation is slightly more complicated, due to
the formal definition of a NTCF; see Section IV for a complete description
of the protocol.
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returned to the verifier. The “equation” measurement can

similarly be coarse-grained into a projection on one of two

orthogonal subspaces, “valid” or “invalid”, i.e. the subspace

that corresponds to all measurement outcomes d such that

d · (x⊕ x′) = 0, or the subspace associated with outcomes

d such that d · (x⊕ x′) = 1.

Applying Jordan’s lemma, it is possible to decompose

the device’s Hilbert space into a direct sum of one- or

two-dimensional subspaces, such that within each two-

dimensional subspace the “pre-image” and “equation” mea-

surements each correspond to an orthonormal basis, such

that the the two bases make a certain angle with each

other. We argue that almost all angles must be very close to

π/4. Indeed, whenever the angles are not near-maximally

unbiased, it is possible to show that by considering the effect

of performing the measurements in sequence, one can devise

an “attack” on the NTCF of a kind that contradicts the

adaptive hardcore bit property of the NTCF — informally,

the attack can simultaneously produce a valid pre-image and

a valid equation, with non-negligible advantage.

Outline of randomness generation protocol: The cor-

rectness of our protocol relies on the claim that in a single

round, if an efficient quantum algorithm has the ability

to generate a valid equation with probability sufficiently

close to 1, then, if instead it is asked for a pre-image, this

pre-image must be close to uniformly distributed over the

two possibilities. Therefore, our protocol repeatedly asks for

pre-images (to generate randomness), while inserting a few

randomly located “equation” challenges, to test the device.

Each time an “equation” challenge has been answered, we

refresh the pseudorandom keys used for the NTCF. This is

required to avoid a simple “attack” by the device, which

would repeatedly use the same y, preimage x, and guessed

equation d — succeeding in the protocol with probability 1
2

without generating any randomness.

Let’s call the sequence of rounds with a particular set of

pseudorandom keys an epoch. Intuitively, we would like to

claim that if the device passes all the equation challenges,

then for most epochs and for most rounds within that epoch,

the state of the device and its measurements must be (close

to) as characterized above: it starts with a qubit initialized

to |0〉, which it measures in the standard basis when the

challenge is C = 0 and in the Hadamard basis when the

challenge is C = 1. To show this we would like to claim

that if the device passes all the equation challenges, for

most such challenges it must produce a valid equation with

probability close to 1. Since each equation challenge occurs

at a random round in the epoch, it should follow from the

adaptive hardcore bit property that the sequence of bits that

the verifier extracts from the device’s answers to “pre-image”

challenges during that epoch must look statistically random.

We give a martingale based argument to formalize this

intuition, though the quantum setting makes it considerably

more challenging than it appears at first sight.

There is however a bigger challenge to analyzing the

protocol — we must show that the sequence that the verifier

extracts from the device’s answers to “pre-image” challenges

must look statistically random even to an infinitely powerful

quantum adversary, who may share an arbitrary entangled

state with the quantum device. If we could assert that each

round of the protocol is played with a qubit exactly in state

|0〉, and measured in Hadamard basis on challenge C = 1,

then this would preclude any entanglement with the quan-

tum adversary, leading to an easy proof that the extracted

sequence looks random to the adversary. Unfortunately the

characterization of device’s qubits leaves plenty of room

for entanglement with the adversary — showing that such

entanglement cannot leak too much information about the

device’s measurements was the major challenge in previ-

ous work on certified randomness through Bell inequality

violations [VV11], [MS14], [AFDF+18]. Our cryptographic

setting presents a new difficulty, which is that in contrast

to the two-player game Bell inequality violation scenarios,

in our setting it is not impossible for a deterministic device

to succeed in the test: it is merely computationally hard to

do so. This prevents us from directly applying the results

in [AFDF+18], [MS14], and requires us to suitably modify

their framework.

In terms of efficiency, for the specific LWE-based

NTCF that we construct, our protocol can use as few as

poly log(N) bits of randomness to generate O(N) bits that

are statistically within negligible distance from uniform.

However, this requires assuming that the underlying LWE

assumption is hard even for sub-exponential size quantum

circuits, with polynomial-size quantum advice (which is

consistent with current knowledge). The more conservative

assumption that our variant of LWE is only hard for polyno-

mial size quantum circuits requires O(Nε) bits of random-

ness for generating the NTCF, for any constant ε > 0. The

following is an informal description; see Theorem 8 for a

more formal statement.

Theorem 1 (Informal). Let F be a NTCF family and λ
a security parameter. Let N = Ω(λ2) and assume the
quantum hardness of solving lattice problems of dimension
λ in time poly(N). There is an N-round protocol for the
interaction between a classical polynomial-time verifier and
a quantum polynomial-time device such that the protocol can
be executed using poly(log(N), λ) bits of randomness, and
for any efficient device and side information E correlated
with the device’s initial state,

HNδ
∞ (O|CE)ρ ≥ (ξ − o(1))N .

Here ξ is a positive constant, δ is a negligible function of λ,
and ρ is the final state of the classical output register O, the
classical register C containing the verifier’s messages to the
device, and the side information E, restricted to transcripts
that are accepted by the verifier in the protocol.
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Sketch of the security analysis: We first describe the

protocol in slightly more detail (see Section IV for a formal

description). The verifier first uses poly(log(N), λ) bits of

randomness to select a pair of functions { fk,b}b∈{0,1} from

an NTCF family, and sends the public function key k to the

quantum device. This pair of functions can be interpreted as

a single 2-to-1 function fk : (b, x) �→ fk,b(x). The verifier

keeps private the trapdoor information that allows to invert

fk. The protocol then proceeds for N rounds. In each round

the device first outputs a point y in the common range of

fk,0 and fk,1. After having received y, the verifier issues one

of two challenges: 0 or 1 — pre-image or equation. If the

challenge is “pre-image”, then the device must output an

x such that f (x) = y. If the challenge is “equation” then

the device must output a nontrivial binary vector d such

that d · (x0 + x1) = 0, where x0 and x1 are the unique

pre-images of y under fk,0 and fk,1 respectively. Since the

verifier has the secret key, she can efficiently compute x0
and x1 from y, and therefore check the correctness of the

device’s response to each challenge. The verifier chooses

poly log(N) rounds in which to issue the challenge 1,

or “equation”, at random. Selecting these rounds requires

only poly log(N) random bits. At the end of each such

round, the verifier samples a new pair of functions from

the NTCF family, and communicates the new public key

to the device. On each of the remaining N − poly log(N)
rounds the verifier records a random bit according to whether

the device returns the pre-image x0, or x1 (e.g. recording

0 for the lexicographically smaller pre-image). At the end

of the protocol the verifier uses a strong quantum-proof

randomness extractor to extract Ω(N) bits of randomness

from the recorded string (this requires at most an additional

poly log(N) random bits of seed).

To guarantee that the extractor produces bits that are

statistically close to uniform, we would like to prove that

the N − poly log(N) random bits recorded by the verifier

must have Ω(N) bits of (smoothed) min-entropy,2 even

conditioned on the side information available to an infinitely

powerful quantum adversary, who may share an arbitrary

entangled state with the quantum device. The analysis pro-

ceeds as follows. First we assume without loss of generality

that the entire protocol is run coherently, i.e. we may

assume that the initial state of the quantum device (holding

quantum register D) and the adversary (holding quantum

register E) is a pure state |φ〉DE, since the adversary may

as well start with a purification of their joint state. We

may also assume that the verifier starts with a cat state on

poly log(N) qubits, and uses one of the registers of the

state, C, to provide the random bits used to select the test

rounds and to issue the challenges in those rounds. (This

is for the sake of analysis only, the actual verifier is of

course completely classical.) We can similarly arrange that

2We refer to Section II for definitions of entropic quantities.

the state remains pure throughout the protocol by using the

principle of deferred measurement. Our goal is to show

a lower bound on the smooth min-entropy of the output

register O in which the verifier has recorded the device’s

outputs, conditioned on the state E of the adversary, and

on the register C of the cat state (conditioning on the latter

represents the fact that the verifier’s choice of challenges

may be leaked to the adversary, and we would like security

even in this scenario). Intuitively, this amounts to bounding

the information accessible to the most powerful adversary

quantum mechanics allows, conditioned on the joint state of

the verifier and device.

In order to bound the entropy of the final state we need

to show that the entropy “accumulates” at each round of the

protocol. A general framework to establish entropy accu-

mulation in quantum protocols such as the one considered

here was introduced in [AFDF+18]. At a high level, the

approach consists in reducing the goal of a min-entropy

bound to a bound on the appropriate notion of (1 + ε)
quantum conditional Rényi entropy, and then arguing that,

under suitable conditions on the process that generates the

outcomes recorded in the protocol, entropy accumulates

sequentially throughout the protocol.

In a little more detail, the first step on getting a handle on

the smooth min-entropy is to use the quantum asymptotic

equipartion property (QAEP) [TCR09] to relate it to the

(1 + ε) conditional Rényi entropy, for suitably small ε. The

second step uses a duality relation for the conditional Rényi

entropy to relate the (1 + ε) conditional Rényi entropy of

the output register O, conditioned on the adversary side

information in R and the register C of the cat state, to a

quantity analogous to the (1− ε′) conditional Rényi entropy

of the output register, conditioned on the register E for the

device, and a purifying copy of the register C of the cat

state. The latter quantity, a suitable conditional entropy of

the output register conditioned on the challenge register and

the state of the device, is the quantity that we ultimately aim

to bound. Note what these transformations have achieved for

us: it is now sufficient to consider as side information only

“known” quantities in the protocol, the verifier’s choice of

challenges and the device’s state; the information held by

the adversary plays no other role than that of a purifying

register.

Our cryptographic setting presents a new difficulty for

this framework, which is that in contrast to the scenarii

based on two-player games considered in [AFDF+18] (see

also [MS14]), in our setting it is not impossible for a

deterministic device to succeed in the test: it is merely

computationally hard to do so. This prevents us from directly

applying the results in [AFDF+18], [MS14], which seem

to crucially rely on the fact that the process that generates

the randomness does so irrespective of the quantum state

in which it is initialized (as long as the output of the

process satisfies the test’s success criterion). This require-
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ment comes about from conditioning that is performed in

order to show that entropy accumulates; in our setting,

conditioning is more delicate as it can in principle induce

non-computationally efficient states for the device. s in

reducing the goal of a min-entropy bound to a bound on a

suitable (1+ ε) conditional Rényi entropy, and then arguing

that, under suitable conditions on the process that generates

the outcomes recorded in the protocol, entropy accumulates

sequentially throughout the protocol.

Recall that we argued that for a single round of the

protocol, we can decompose the device’s Hilbert space into

a direct sum of one- or two-dimensional subspaces, such that

within most two-dimensional subspace the “pre-image” and

“equation” measurements correspond to orthonormal bases

that make an angle close to π/4 with each other. Showing

that the Rényi entropy accumulates in each round requires

a device in which all angles are close to π/4, not “almost

all”. To accommodate for this we “split” the state of the

device into its component on the good subspace, where

the angles are unbiased, and the bad subspace, where the

measurements may be aligned. The fact that the distinction

between good and bad subspace is not measured in the

protocol, but is only a distinction made for the analysis,

requires us to apply a fairly delicate martingale based

argument that takes into account possible interference effects

and bounds those “branches” where the state has gone

through the bad subspace an improbably large number of

times. Whenever the state lies in the good susbpace, we can

appeal to an uncertainty principle from [MS14] to show that

the device’s measurement increases the conditional Rényi

entropy of the output register by a small additive constant.

Pursuing this approach across all N rounds, we obtain a

linear lower bound on the conditional Rényi entropy of

the output register, conditioned on the state of the device.

As argued above this in turn translates into a linear lower

bound on the smooth conditional min-entropy of the output,

conditioned on the state of the adversary and the verifier’s

choice of challenges. It only remains to apply a quantum-

proof randomness extractor to the output, using a poly-

logarithmic number of additional bits of randomness, to

obtain the final result.
Our NTCF Family: Our goal is to construct a family of

pairs of injective functions f0, f1 with the same image such

that it is hard to find a collision x0, x1 with f0(x0) = f1(x1),
but so that given a suitable trapdoor it is possible to recover,

for any y, values x0, x1 such that f0(x0) = f1(x1) = y. We

do this by relying on the hardness of the Learning with

Errors (LWE) problem [Reg05]. LWE states that given a

public uniformly random matrix A ∈ Zm×n
q for m � n, it

is intractable to distinguish between u = As + e (mod q)
and a uniform vector, for a uniform vector s and small

discrete Gaussian vector e (all arithmetic from here on is

performed modulo q; we use ⊕ to denote binary XOR).

Inspired by [Mah17a], our function pair will be characterized

by (A, u = As + e), but for a binary vector s.3 The

trapdoor for our function is a lattice trapdoor for A that

allows to recover s, e given a vector of the form As + e (it

is possible to generate A together with a trapdoor such that

A is indistinguishable from uniform, as originally shown by

Ajtai [Ajt99]).

The structure of the LWE problem motivates us to con-

sider functions f0, f1 that range over probability distri-

butions. Specifically, we define the distribution fb(x) as

fb(x) = Ax + b · (As) + e′ where e′ is a discrete Gaussian

random variable with a sufficiently wide Gaussian param-

eter. Observe that the functions have overlapping images

in the following sense: f0(x) = f1(x− s). Moreover,

since As + e′ is statistically indistinguishable from u + e′,
we can efficiently sample from the distribution fb(x) up

to negligible statistical distance. This probabilistic notion

complicates the definition and use of the family, but the

principles are similar to the deterministic version.4

Finally, we need to show the adaptive hardcore bit prop-

erty. Formally, letting x0, x1 ∈ Zn
q be a collision, and

letting z0, z1 ∈ {0, 1}n log q be their binary representations,

respectively, we need to show that it is intractable to come

up with a pair (b, zb), for some b ∈ {0, 1}, together with

a nontrivial vector d and with the value d · (z0 ⊕ z1), with

probability noticeably better than 1
2 . “Nontrivial” here means

belonging to a well defined and efficiently recognizable set

D with density ≈ 1 in {0, 1}n log q (e.g. the zero vector is

obviously excluded). Assume for the sake of this overview

that we get a tuple (z0, d, c). We first notice that since x0, x1
is a collision, then x1 = x0 − s (mod q). We now use

the fact that s is a binary vector to show, using simple

arithmetic, that z0⊕ z1 can be expressed as a linear function

of the bits of s, so that d · (z0 ⊕ z1) = d̂ · s (mod 2), for

some d̂ ∈ {0, 1}n. (the description of this transformation

will effect our choice of the set D). We thus need to show

that it is intractable, given the instance (A, u = As + e),
to come up with d̂, d̂ · s (mod 2). To prove this we use

the lossiness technique used in [GKPV10] and show that

this is equivalent to coming up with d̂, d̂ · s (mod 2) given

B, Bs where B ∈ Zk×n
q is now a highly shrinking function,

even for binary inputs, i.e. k log q � n. This seems like an

easy task since the adversary now doesn’t have the complete

information about s so it shouldn’t be able to compute d̂ · s
(mod 2) for any reasonable d̂, except d̂ might depend on

B itself (recall that d̂ is chosen adversarially). We prove

via Fourier analysis that if B is sufficiently shrinking, then

there is no d̂ that can take advantage of the dependence on

3It is known that LWE is hard even with binary secrets. We do not use
this property explicitly but rather employ the respective techniques in our
proof.

4Another possible variant is to define fb(x) = �Ax + b · (As)� where
�·� is a rounding function that truncates “many” of the least significant
bits of its operand. However, we remain with the Gaussian variant which
is easier to analyze.
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B, which completes the proof.
Organization: We start with some notation and prelim-

inaries in Section II. Section III contains the definition of a

noisy trapdoor claw-free family (NTCF). Our construction

for such a family is given in Section ?? (with Appendix ??
containing relevant preliminaries on the learning with errors

problem). The randomness generation protocol is described

in Section IV. In Section V we introduce our formalism for

modeling the actions of an arbitrary prover, or device, in

the protocol. In Section ?? we analyze a single round of

the protocol, and in Section ?? we show that randomness

accumulates across multiple rounds.
Due to space constraints all proofs have been omitted

from this extended abstract. We refer to the full ver-

sion [BCM+18] for complete statements and proofs.

II. PRELIMINARIES

A. Notation
Z is the set of integers, and N the set of natural numbers.

For any q ∈ N such that q ≥ 2 we let Zq denote the

ring of integers modulo q. We generally identify an element

x ∈ Zq with its unique representative [x]q ∈ (− q
2 , q

2 ] ∩Z.

For x ∈ Zq we define |x| = |[x]q|. When considering an

s ∈ {0, 1}n we sometimes also think of s as an element of

�
n
q , in which case we write it as s.
We use the terminology of polynomially bounded and

negligible functions. A function n : N → R+ is poly-
nomially bounded if there exists a polynomial p such that

n(λ) ≤ p(λ) for all λ ∈ N. A function n : N → R+ is

negligible if for every polynomial p, p(λ)n(λ) →λ→∞ 0.

We write negl(λ) to denote an arbitrary negligible function

of λ. For two parameters κ, λ we write κ � λ to express

the constraint that κ should be “sufficiently smaller than” λ,

meaning that there exists a small universal constant c > 0
such that κ ≤ cλ.
H always denotes a finite-dimensional Hilbert space. We

use indices HA, HB, etc., to refer to distinct spaces. Pos(H)
is the set of positive semidefinite operators on H, and D(H)
the set of density matrices, i.e. the positive semidefinite

operators with trace 1. For an operator X on H, we use

‖X‖ to denote the operator norm (largest singular value) of

X, and ‖X‖tr =
1
2‖X‖1 = 1

2 Tr
√

XX† for the trace norm.

B. Entropies
For p ∈ [0, 1] we write H(p) = −p log p − (1 −

p) log(1− p) for the binary Shannon entropy. We measure

randomness using Rényi conditional entropies. For a positive

semidefinite matrix σ ∈ Pos(H) and ε ≥ 0, let
〈
σ
〉

1+ε
= Tr

(
σ1+ε

)
.

In addition, for positive semidefinite σ, ρ ∈ Pos(H) such

that the support of ρ is included in the support of σ, and

ε ≥ 0, let

Q̃1+ε(ρ‖σ) = 〈σ− ε
2(1+ε) ρσ

− ε
2(1+ε) 〉1+ε . (1)

Quantum analogues of the conditional Rényi entropies can

be defined as follows.

Definition 2. Let ρAB ∈ Pos(HA ⊗ HB) be positive

semidefinite. Given ε > 0, the (1 + ε) Rényi entropy of

A conditioned on B is defined as

H1+ε(A|B)ρ = sup
σ∈D(HB)

H1+ε(A|B)ρ|σ ,

where for any σB ∈ D(HB),

H1+ε(A|B)ρ|σ = −1
ε

log Q̃1+ε(ρ‖σ) .

.

Rényi entropies are used in the proofs because they

have better “chain-rule-like” properties than the min-entropy,

which is the most appropriate measure for randomness

quantification.

Definition 3. Let ρAB ∈ Pos(HA ⊗ HB) be positive

semidefinite. Given a density matrix the min-entropy of A
conditioned on B is defined as

H∞(A|B)ρ = sup
σ∈D(HB)

H∞(A|B)ρ|σ ,

where for any σB ∈ D(HB),

H∞(A|B)ρ|σ = max
{

λ ≥ 0 | 2−λ IdA⊗σB ≥ ρAB
}

.

It is often convenient to consider the smooth min-

entropy, which is obtained by maximizing the min-entropy

over all positive semidefinite operators matrices in an ε-

neighborhood of ρAB. The definition of neighborhood de-

pends on a choice of metric; the canonical choice is the

“purified distance”. Since this choice will not matter for us

we defer to [Tom15] for a precise definition.

Definition 4. Let ε ≥ 0 and ρAB ∈ Pos(HA⊗HB) positive

semidefinite. The ε-smooth min-entropy of A conditioned on

B is defined as

Hε
∞(A|B)ρ = sup

σAB∈B(ρAB,ε)
H∞(A|B)σ ,

where B(ρAB, ε) is the ball of radius ε around ρAB, taken

with respect to the purified distance.

The following theorem relates the min-entropy to the the

Rényi entropies introduced earlier. The theorem expresses

the fact that, up to a small amount of “smoothing” (the

parameter δ in the theorem), all these entropies are of similar

order.

Theorem 5 (Theorem 4.1 [MS14]). Let ρXE ∈ Pos(HX ⊗
HE) be positive semidefinite of the form ρXE =
∑x∈X |x〉〈x| ⊗ ρx

E, where X is a finite alphabet. Let σE ∈
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D(HE) be an arbitrary density matrix. Then for any δ > 0
and 0 < ε ≤ 1,

Hδ
∞(X|E)ρ ≥ −1

ε
log

(
∑
x

Q̃1+ε

(
ρx

E‖σE
))

− 1 + 2 log(1/δ)

ε
.

III. TRAPDOOR CLAW-FREE HASH FUNCTIONS

Let λ be a security parameter, and X and Y be finite

sets (depending on λ). For our purposes an ideal family of

functions F would have the following properties. For each

public key k, there are two functions { fk,b : X → Y}b∈{0,1}
that are both injective and have the same range (equivalently,

(b, x) �→ fk,b(x) is 2-to-1), and are invertible given a

suitable trapdoor tk (i.e. tk can be used to compute x given

b and y = fk,b(x)). Furthermore, the pair of functions

should be claw-free: it must be hard for an attacker to find

two pre-images x0, x1 ∈ X such that fk,0(x0) = fk,1(x1).
Finally, the functions should satisfy an adaptive hardcore bit

property, which is a stronger form of the claw-free property:

assuming for convenience that X = {0, 1}w, we would

like that it is computationally infeasible to simultaneously

generate an (b, xb) ∈ {0, 1}×X and a d ∈ {0, 1}w \ {0w}
such that with non-negligible advantage over 1

2 the equation

d · (x0 ⊕ x1) = 0, where x1−b is defined as the unique

element such that fk,1−b(x1−b) = fk,b(xb), holds.

Unfortunately, we do not know how to construct a func-

tion family that exactly satisfies all these requirements under

standard cryptographic assumptions. Instead, we construct

a family that satisfies slightly relaxed requirements, that

we will show still suffice for our purposes, based on the

hardness of the learning with errors (LWE) problem. The

requirements are relaxed as follows. First, the range of the

functions is no longer a set Y ; instead, it is DY , the set of

probability densities over Y . That is, each function returns

a density, rather than a point. The trapdoor injective pair

property is then described in terms of the support of the

output densities: these supports should either be identical,

for a colliding pair, or be disjoint, in all other cases.

The consideration of functions that return densities gives

rise to an additional requirement of efficiency: there should

exist a quantum polynomial-time procedure that efficiently

prepares a superposition over the range of the function, i.e.

for any key k and b ∈ {0, 1}, the procedure can prepare the

state
1√X ∑

x∈X ,y∈Y

√
fk,b(x)(y)|x〉|y〉 . (2)

In our instantiation based on LWE, it is not possible to pre-

pare (2) perfectly, but it is possible to create a superposition

with coefficients
√

f ′k,b(x), such that the resulting state is

within negligible trace distance of (2). The density f ′k,b(x)
is required to satisfy two properties used in our protocol.

First, it must be easy to check, without the trapdoor, if an

y ∈ Y lies in the support of f ′k,b(x). Second, the inversion

algorithm should operate correctly on all y in the support of

f ′k,b(x).
We slightly modify the adaptive hardcore bit requirement

as well. Since the set X may not be a subset of binary

strings, we first assume the existence of an injective, effi-

ciently invertible map J : X → {0, 1}w. Next, we only

require the adaptive hardcore bit property to hold for a subset

of all nonzero strings, instead of the set {0, 1}w \ {0w}. Fi-

nally, membership in the appropriate set should be efficiently

checkable, given access to the trapdoor.

A formal definition follows.

Definition 6 (NTCF family). Let λ be a security parameter.

Let X and Y be finite sets. Let KF be a finite set of keys.

A family of functions

F =
{

fk,b : X → DY
}

k∈KF ,b∈{0,1}

is called a noisy trapdoor claw free (NTCF) family if the

following conditions hold:

1) Efficient Function Generation. There exists an effi-

cient probabilistic algorithm GENF which generates

a key k ∈ KF together with a trapdoor tk:

(k, tk)← GENF (1λ) .

2) Trapdoor Injective Pair. For all keys k ∈ KF the

following conditions hold.

a) Trapdoor: For all b ∈ {0, 1} and x �= x′ ∈ X ,

SUPP( fk,b(x)) ∩ SUPP( fk,b(x′)) = ∅. More-

over, there exists an efficient deterministic algo-

rithm INVF such that for all b ∈ {0, 1}, x ∈ X
and y ∈ SUPP( fk,b(x)), INVF (tk, b, y) = x.

b) Injective pair: There exists a perfect matching

Rk ⊆ X × X such that fk,0(x0) = fk,1(x1) if

and only if (x0, x1) ∈ Rk.

3) Efficient Range Superposition. For all keys k ∈ KF
and b ∈ {0, 1} there exists a function f ′k,b : X �→ DY
such that

a) For all (x0, x1) ∈ Rk and y ∈ SUPP( f ′k,b(xb)),
INVF (tk, b, y) = xb and INVF (tk, b⊕ 1, y) =
xb⊕1.

b) There exists an efficient deterministic procedure

CHKF that, on input k, b ∈ {0, 1}, x ∈ X and

y ∈ Y , returns 1 if y ∈ SUPP( f ′k,b(x)) and 0
otherwise. Note that CHKF is not provided the

trapdoor tk.

c) For every k and b ∈ {0, 1},

Ex←UX
[

H2( fk,b(x), f ′k,b(x))
] ≤ μ(λ) ,

for some negligible function μ(·). Here H2 is

the Hellinger distance; see (??). Moreover, there

exists an efficient procedure SAMPF that on
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input k and b ∈ {0, 1} prepares the state

1√|X | ∑
x∈X ,y∈Y

√
( f ′k,b(x))(y)|x〉|y〉 . (3)

4) Adaptive Hardcore Bit. For all keys k ∈ KF the

following conditions hold, for some integer w that is

a polynomially bounded function of λ.

a) For all b ∈ {0, 1} and x ∈ X , there exists a

set Gk,b,x ⊆ {0, 1}w such that Prd←U{0,1}w [d /∈
Gk,b,x] is negligible, and moreover there exists an

efficient algorithm that checks for membership in

Gk,b,x given k, b, x and the trapdoor tk.

b) There is an efficiently computable injection J :
X → {0, 1}w, such that J can be inverted effi-

ciently on its range, and such that the following

holds. If

Hk =
{
(b, xb, d, d · (J(x0)⊕ J(x1))) |

b ∈ {0, 1}, (x0, x1) ∈ Rk,
d ∈ Gk,0,x0 ∩ Gk,1,x1

}
, 5

Hk = {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Hk
}

,

then for any quantum polynomial-time proce-

dure A there exists a negligible function μ(·)
such that∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]

− Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk]
∣∣∣ ≤ μ(λ) . (4)

IV. PROTOCOL DESCRIPTION

We introduce two protocols. The first we call the (general)
randomness expansion protocol, or Protocol 1. This is our

main randomness expansion protocol. It is introduced in

Section IV-A, and summarized in Figure 1. The protocol

describes the interaction between a verifier and prover.

Ultimately, we aim to obtain the guarantee that any computa-

tionally bounded prover that is accepted with non-negligible

probability by the verifier in the protocol must generate

transcripts that contain information-theoretic randomness.

The second protocol is called the simplified protocol, or

Protocol 2. It is introduced in Section IV-B, and summarized

in Figure 2. This protocol abstracts some of the main features

Protocol 1, and will be used as a tool in the analysis (it is

not meant to be executed literally).

A. The randomness expansion protocol

Our randomness expansion protocol, Protocol 1, is de-

scribed in Figure 1. The protocol is parametrized by a choice

of security parameter λ. All other parameters are assumed

to be specified as a function of λ: the number of rounds

5Note that although both x0 and x1 are referred to to define the set Hk ,
only one of them, xb, is explicitly specified in any 4-tuple that lies in Hk .

N, the error tolerance parameter γ ≥ 0, and the testing

parameter q ∈ (0, 1]. For intuition, γ can be thought of as a

small constant, q as a parameter that scales as poly(λ)/N
(for example, q = λ/N), and N as a function that may

grow super-polynomially, or even exponentially, with λ. In

addition, the protocol depends on an NTCF family F (see

Definition 6) that is known to both the verifier and the prover.

At the start of the protocol, the verifier executes (k, tk)←
GENF (1λ) to obtain the public key k and trapdoor tk for a

pair of functions { fk,b : X → DY}b∈{0,1} from the NTCF

family. The verifier sends the key k to the prover and keeps

the associated trapdoor private.

In each of the N rounds of the protocol, the prover is first

required to provide a value y ∈ Y . For each b ∈ {0, 1}, the

verifier uses the trapdoor to compute x̂b ← INVF (tk, b, y).
(If the inversion procedure fails, the verifier requests another

sample from the prover.) For convenience, introduce a set

Ĝy = Gk,0,x0 ∩ Gk,1,x1 . (5)

The verifier then chooses a round type G ∈ {0, 1} according

to a biased distribution: either a test round, G = 0, chosen

with probability Pr(G = 0) = q, or a generation round,

G = 1, chosen with the remaining probability Pr(G = 1) =
1 − q. The former type of round is less frequent, as the

parameter q will eventually be set to a very small value,

that goes to 0 with the number of rounds of the protocol.

The prover is not told the round type.

Depending on the round type, the verifier chooses a

challenge C ∈ {0, 1} that she sends to the prover. In the

case of a test round the challenge is chosen uniformly at

random; in the case of a generation round the challenge is

always C = 1. In case C = 0 the prover is asked to return

a pair (m, d) ∈ {0, 1} × {0, 1}w. The pair is called valid

if m = d · (J(x̂0) ⊕ J(x̂1)) and d ∈ Ĝy. If d ∈ Ĝy, the

verifier sets a decision bit W = 1 if the answer is valid,

and W = 0 if not. If d /∈ Ĝy, the verifier sets the decision

bit W ∈ {0, 1} uniformly at random.6 In case C = 1, the

prover should return a pair (b, x) ∈ {0, 1} ×X . The pair is

called valid if fk,b(x) = y. The verifier sets a decision bit

W = 1 in case the pair is valid, and W = 0 otherwise. The

set of valid pairs on challenge C = c ∈ {0, 1} is denoted

Vy,c.

After each test round the verifier samples a fresh (k, tk)←
GENF (1λ) and communicates the new public key k to the

prover.

At the end of the protocol, the verifier computes the frac-

tion of test rounds in which the decision bit has been set to

1. If this fraction is smaller than (1− γ), the verifier aborts.

Otherwise, the verifier returns the concatenation of the bits

b obtained from the prover in generation rounds. (These bits

6This choice if made for technical reasons that have to do with the
definition of the adaptive hardcore bit property; see Section ?? and the
proof of Proposition ?? for details.
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are recorded in the verifier’s output string O1 · · ·ON , such

that Oi = 0 whenever the round is a test round.)

Let λ be a security parameter. Let N be a polynomially

bounded function of λ, and γ, q > 0 functions of λ. Let F
be an NTCF family.

At the start of the protocol, the verifier communicates N to

the device. In addition, the verifier samples an initial key

(k, tk) ← GENF (1λ), sends k to the prover and keeps the

trapdoor information tk private.

1) For i = 1, . . . , N:

a) The prover returns a y ∈ Y to the verifier.

For b ∈ {0, 1} the verifier uses the trapdoor to

compute x̂b ← INVF (tk, b, y).
b) The verifier selects a round type Gi ∈ {0, 1}

according to a Bernoulli distribution with param-

eter q: Pr(Gi = 0) = q and Pr(Gi = 1) = 1− q.

In case Gi = 0 (test round), she chooses a

challenge Ci ∈ {0, 1} uniformly at random. In

case Gi = 1 (generation round), she sets Ci = 1.

The verifier keeps Gi private, and sends Ci to the

prover.

i) In case Ci = 0 the prover returns (m, d) ∈
{0, 1} × {0, 1}w. If d /∈ Ĝy, the set defined

in (5), the verifier sets W to a uniformly ran-

dom bit. Otherwise, the verifier sets W = 1
if d · (J(x̂0)⊕ J(x̂1)) = m and W = 0 if not.

ii) In case Ci = 1 the prover returns (b, x) ∈
{0, 1} × X . The verifier sets W as the value

returned by CHKF (k, b, x, y).
c) In case Gi = 1, the verifier sets Oi = b. In case

Gi = 0, she sets Wi = W.

d) In case Gi = 0, the verifier samples a new key

(k, tk)← GENF (1λ). She sends k to the prover

and keeps the trapdoor information tk private.

This key will be used until the next test round,

included.

2) If ∑i:Gi=0 Wi < (1 − γ)qN, the verifier aborts.

Otherwise, she returns the string O obtained by con-

catenating the bits Oi for all i ∈ {1, . . . , N} such that

Gi = 1.

Figure 1. The randomness expansion protocol, Protocol 1. See Definition 6
for notation associated with the NTCF family F .

B. The simplified protocol

For purposes of analysis only we introduce a simplified

variant of Protocol 1, which is specified in Figure 2. We

call it the simplified protocol, or Protocol 2. The protocol is

very similar to the randomness expansion protocol described

in Figure 1, except that the prover’s answers and the ver-

Let λ be a security parameter. Let N be a polynomially

bounded function of λ, and γ, η, κ, q > 0 functions of λ.

1) For i = 1, . . . , N:

a) The verifier selects a round type Gi ∈ {0, 1}
according to a Bernoulli distribution with param-

eter q: Pr(Gi = 0) = q and Pr(Gi = 1) = 1− q.

In case Gi = 0 (test round), she chooses Ci ∈
{0, 1} uniformly at random and Ti ∈ {0, 1} such

that Pr(Ti = 0) = 1− κ and Pr(Ti = 1) = κ. In

case Gi = 1 (generation round), she sets Ci = 1
and Ti = 0. The verifier keeps Gi private, and

sends (Ci, Ti) to the prover.

i) In case Ci = 0 the prover returns u ∈ {0, 1}.

If Ti = 1 the prover in addition reports k ∈
{0, 1}.7If Ti = 0 the verifier sets Wi = u. If

Ti = 1 the verifier sets Wi = u(1− k).
ii) In case Ci = 1 the prover returns v ∈
{0, 1, 2}. The verifier sets Oi = v and

Wi = 1v∈{0,1}.
2) If ∑i:Gi=0∧Ti=1 Wi < (1 − γ

κ − η)κqN, the verifier

rejects the interaction. Otherwise, she returns the string

O obtained by concatenating the bits Oi for all i ∈
{1, . . . , N} such that Gi = 1.

Figure 2. The simplified protocol, Protocol 2.

ifier’s checks are simplified, and in test rounds there is an

additional challenge bit T ∈ {0, 1}. This new challenge

asks the prover to perform a projective measurement on

its private space that indicates whether the state lies in

a “good subspace” (indicated by an outcome K = 0) or

in the complementary “bad subspace” (outcome K = 1).

The “good” and “bad” subspace represent portions of space

where the device’s other two measurements, M and Π are

anti-aligned and aligned respectively; see the definition of a

simplified device in Section ?? for details.

For the case of a challenge C = 0, in Protocol 1 the

prover returns an equation (d, m). In the simplified protocol

the prover returns a single bit u ∈ {0, 1} that is meant to

directly indicate the verifier’s decision (i.e. the bit W). If

moreover T = 1 the prover is required to reply with an

additional bit k ∈ {0, 1}. In this case, the verifier makes the

decision to accept, i.e. sets W = 1, if and only if u = 1
and k = 0. For the case of a challenge C = 1, in Protocol 1

the prover returns a pair (b, x). In the simplified protocol

the prover returns a value v ∈ {0, 1, 2} that is such that

v = b in case (b, x) is valid, i.e. (b, x) ∈ Vy,1, and v = 2
otherwise.

Note that this “honest” behavior for the prover is not

necessarily efficient. Moreover, it is easy for a “malicious”

prover to succeed in Protocol 2, e.g. by always returning
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u = 1 (valid equation), k = 0 (good subspace) and

v ∈ {0, 1} (valid pre-image). Our analysis will not consider

arbitrary provers in Protocol 2, but instead provers whose

measurements satisfy certain constraints that arise from the

analysis of Protocol 1. For such provers, it will be impossible

to succeed in the simplified protocol without generating

randomness. Further details are given in Section ??.

C. Completeness

We describe the intended behavior for the prover in

protocol 1. Fix an NTCF family F and a key k ∈ KF .

In each round, the “honest” prover performs the following

actions.

1) The prover executes the efficient procedure SAMPF
in superposition to obtain the state |ψ(1)〉 defined as

1√|X | ∑
x∈X ,y∈Y ,b∈{0,1}

√
( f ′k,b(x))(y)|b, x〉|y〉 .

2) The prover measures the last register to obtain an y ∈
Y . Using item 2. from the definition of an NTCF, the

prover’s re-normalized post-measurement state is

|ψ(2)〉 =
1√
2

(|0, x0〉+ |1, x1〉
)|y〉 .

a) In case Ci = 0, the prover evaluates the function

J on the second register, containing xb, and then

applies a Hadamard transform to all w+ 1 qubits

in the first two registers. Tracing out the register

that contains y, this yields the state

|ψ(3)〉 = 2−
w+2

2 ∑
d,b,m

(−1)d·J(xb)⊕mb|m〉|d〉

= (−1)J(x0)2−
w
2

∑
d∈{0,1}w

|d · (J(x0)⊕ J(x1))〉|d〉 .

The prover measures both registers to obtain an

(m, d) that it sends back to the verifier.

b) In case Ci = 1, the prover measures the first two

registers of |ψ(2)〉 in the computational basis, and

returns the outcome (b, xb) to the verifier.

Lemma 7. For any λ and k ← GENF (1λ), the strategy for
the honest prover (on input k) in one round of the protocol
can be implemented in time polynomial in λ and is accepted
with probability negligibly close to 1.

Proof: Both efficiency and correctness of the prover

follow from the definition of an NTCF (Definition 6).

The prover fails only if he obtains an outcome d /∈ Ĝy,

which by item 4(a) in the definition happens with negligible

probability.

7The bit k should not be confused with the public key k for the NTCF
that is used in Protocol 1. In Protocol 2, there is no NTCF, and no key.

V. SECURITY ANALYSIS

Due to lack of space we refer the reader to the full ver-

sion [BCM+18] for a complete analysis of the randomness

generation properties of Protocol 1. Here we very briefly

sketch the main steps of the proof.

We model the behavior of an arbitrary prover in the

randomness expansion protocol (Protocol 1 in Figure 1). We

do this by introducing a simplified model for the prover as

a device that implements the prover’s actions.

The first step in the proof is to relate the randomness

generated by an arbitrary device D in Protocol 1 to the

randomness generated by a specific device, that we call

the “simplified device” associated to D, in the simplified

protocol, Protocol 2 described in 2.

The advantage of the simplified device is that it allows us

to abstract the complex structured of Protocol 1, imposed by

the use of the NTCF family, to a very simple kind of protocol

that interweaves “test” and “generation” rounds, where each

round essentially results in a single-bit outcome collected

from the prover.

The last step consists in showing that the simplified device

derived from D generates randomness in Protocol 2. For this

the important point is that, under the assumption that D does

not break our post-quantum hardness assumption, we are

able to guarantee that the measurements that the simplified

device performs in the test and generation rounds are (es-

sentially) mutually unbiased. Thus, if the device consistently

reports the same outcome (“win”) in test rounds, then it must

necessarily generate randomness in the generation rounds.

At a more technical level, we adapt the framework for

randomness generation from [MS14], based on the use of

(1+ ε) Rényi entropies, to our setting, where the guarantees

on unbiasedness of the device’s measurements are somewhat

weaker than in their setting.

For completeness we end the extended abstract by stating

formally our main result.

Theorem 8. Let F be an NTCF family and λ a security
parameter. Let N be a polynomially bounded function of
λ such that N = Ω(λ2). Set q = λ/N. Then there is a
negligible (as a function of λ) δ such that for any small
enough γ > 0, any efficient prover, and side information E
correlated with the prover’s initial state,

HNδ
∞ (O|CE)ρ ≥ (ξ − o(1))N ,

where ρ is the final state of the output, challenge, and ad-
versary registers, restricted to transcripts that are accepted
by the verifier in the protocol, ξ is a positive constant,8and
o(1) is a function that goes to 0 as λ → ∞.

Assume that an execution of GEN(1λ) requires O(λr) bits

of randomness, for some constant r. (For example, for the

8The constant ξ is at least some positive universal constant of order
1/10, for all small enough γ.
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case of our construction of a NTCF family based on LWE,

we have r = 2.) Then an execution of the protocol using

the parameters in Theorem 8 requires only poly(λ, log N)
bits of randomness for the verifier to generate the key k
and select the challenges. Taking N to be slightly sub-

exponential in λ, e.g. N = 2
√

λ, yields sub-exponential

randomness expansion.
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