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Abstract—There are significant obstacles to establishing an
equivalence between the worst-case and average-case hardness of
NP: Several results suggest that black-box worst-case to average-
case reductions are not likely to be used for reducing any worst-
case problem outside coNP to a distributional NP problem.

This paper overcomes the barrier. We present the first non-
black-box worst-case to average-case reduction from a problem
outside coNP (unless Random 3SAT is easy for coNP algo-
rithms) to a distributional NP problem. Specifically, we consider
the minimum time-bounded Kolmogorov complexity problem
(MINKT), and prove that there exists a zero-error randomized
polynomial-time algorithm approximating the minimum time-
bounded Kolmogorov complexity k within an additive error
˜O(

√
k) if its average-case version admits an errorless heuristic

polynomial-time algorithm. (The converse direction also holds
under a plausible derandomization assumption.) We also show
that, given a truth table of size 2n, approximating the minimum
circuit size within a factor of 2(1−ε)n is in BPP for some constant
ε > 0 if and only if its average-case version is easy.

Based on our results, we propose a research program for
excluding Heuristica, i.e., establishing an equivalence between
the worst-case and average-case hardness of NP through the lens
of MINKT or the Minimum Circuit Size Problem (MCSP).

Keywords—average-case complexity; non-black-box reduction;
time-bounded Kolmogorov complexity; minimum circuit size
problem

I. INTRODUCTION

The main result of this paper is to establish a relationship

between two long-standing open questions in complexity the-

ory.

Theorem (informal). If an approximation version of MINKT
or MCSP is NP-hard, then Heuristica does not exist, that
is, the average-case and worst-case hardness of NP are
equivalent.

Based on this, we propose resolving the former question

as a potentially feasible research program towards excluding

Heuristica. We elaborate on the two open questions below.

A. Impagliazzo’s Five Worlds

Impagliazzo [1] gave an influential survey on average-case

complexity, and explored five possible worlds: Algorithmica

(where NP is easy on the worst-case; e.g. P = NP), Heuristica

(where NP is hard on the worst-case, but easy on the average-

case; e.g. P �= NP and DistNP ⊆ AvgP), Pessiland (where

NP is hard on average, but there is no one-way function),

Minicrypt (where a one-way function exists, but no public-key

cryptography exists), and Cryptomania (public-key cryptogra-

phy exists). These are classified according to four central open

P ≠ NP

DistNP ⊈ AvgP

∃ one-way functions

∃ public-key cryptography

MCSP ∉ P
MINKT ∉ P

Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

?

?

This work
?

?

?

Fig. 1. Impagliazzo’s five worlds. Note that this figure ignores details such
as the difference between P and BPP; MCSP and its approximation version
GapMCSP.

questions in complexity theory, and exactly one of the worlds

corresponds to our world.

What is known about Impagliazzo’s five worlds? The list

of the five worlds is known to be in “decreasing order” of

the power of polynomial-time machines; that is, ∃ public-key

cryptography ⇒ ∃ one-way functions ⇒ DistNP �⊆ AvgP ⇒
P �= NP. The converse directions of these implications are

important open questions in complexity theory; that is, True
?⇒ P �= NP

?⇒ DistNP �⊆ AvgP
?⇒ ∃ one-way functions

?⇒
∃ public-key cryptography. By establishing one implication,

one possible world is excluded from Impagliazzo’s five worlds.

And if the four implications are proved, it is concluded that our

world is Cryptomania, i.e., computationally-secure public-key

cryptography exists.

B. Minimum Circuit Size Problem and Its Variants

Another long-standing open question in complexity theory,

whose importance is best explained with Impagliazzo’s five

worlds, is the complexity of MCSP, or its Kolmogorov com-

plexity variants, such as MKTP or MINKT. The Minimum
Circuit Size Problem (MCSP [2]) asks, given a function

f : {0, 1}n → {0, 1} represented as its entire truth table of

size 2n together with an integer s ∈ N, whether there exists

a circuit of size at most s computing f . Similarly, MINKT
(Minimum Kolmogorov Time-bounded Complexity [3]) asks

the minimum program size to output a given string x within a
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given time bound t; specifically, given a string x and integers

t, s represented in unary, it asks whether there is a program

of size ≤ s that outputs x within t steps. (There is another

variant called MKTP [4], [5], which aims at minimizing s+t,
i.e., the program size plus the time it takes to output x by a

random access machine.)

These problems are easily shown to be in NP. However,

no NP-completeness proof has been found, nor no evidence

against NP-completeness (under weak reducibility notions)

has been found so far. This is despite the fact that MCSP
is recognized as a fundamental problem as early as 1950s in

the Soviet Union [6]. Indeed, it is reported in [7] that Levin

delayed his publication on the NP-completeness of SAT [8]

because he wanted to prove a similar result for MCSP. It

is thus a long-standing open problem in complexity theory

whether MCSP is NP-complete or not. The open question is

depicted in Fig. 1 as the implication “NP �= P
?⇒ MCSP �∈

P.”1

A fundamental relationship between cryptography and

MCSP was discovered in the celebrated natural proof frame-

work of Razborov and Rudich [9], based on which Kabanets

and Cai [2] reawakened interest in MCSP. Since then many

efforts have been made to understand the complexity of MCSP
(e.g., [4], [7], [10]–[21]). In particular, any one-way function

can be inverted if MCSP (or MINKT) is in BPP (cf. [4],

[22], [23]). This corresponds to the implication “∃ one-way

functions ⇒ MCSP �∈ BPP.”

This paper shows that if an approximation version of MCSP
or MINKT cannot be solved in BPP, then its average-case

version is not in AvgP. In particular, NP-completeness of

the approximation problem excludes Heuristica, i.e., a world

where NP �⊆ BPP and DistNP ⊆ AvgP. The latter is a central

open question in the theory of average-case complexity, as we

review next.

C. Average-case Complexity

A traditional complexity class such as P and NP measures

the performance of an algorithm with respect to the worst-
case input. However, such a worst-case input may not be found

efficiently, and may never be encountered in practice. Average-

case complexity, pioneered by Levin [24], aims at analyzing

the performance of an algorithm with respect to random inputs
which can be easily generated by an efficient algorithm.

Specifically, a distributional problem (L,D) is a pair of

a language L ⊆ {0, 1}∗ and a family of distributions D =
{Dm}m∈N. A family of distributions D is said to be efficiently
samplable if there exists a randomized polynomial-time al-

gorithm that, given an integer m ∈ N represented in unary,

outputs a string distributed according to Dm. DistNP is the

class of distributional problems (L,D) such that L ∈ NP and

D is efficiently samplable. The performance of an algorithm

1Note that a problem L is NP-hard under polynomial-time Turing reduc-
tions iff NP �⊆ PR ⇒ L �∈ PR for every oracle R. The unrelativized
implication NP �⊆ P ⇒ L �∈ P gives rise to the weakest notion of NP-
hardness.

for a distributional problem (L,D) is measured by the average-

case behavior of A on input chosen according to Dm, for each

m ∈ N; specifically, for a failure probability δ : N → [0, 1],
AvgδP denotes the class of distributional problems (L,D)
that admit an errorless heuristic polynomial-time algorithm
A; that is, A(x) outputs the correct answer L(x) or otherwise

a special failure symbol ⊥ for every input x, and A(x) outputs

⊥ with probability at most δ(m) over the random choice

of x ∼ Dm, for every instance size m ∈ N. We define

AvgP :=
⋂

c∈N Avgm−cP. The reader is referred to the survey

of Bogdanov and Trevisan [25] for detailed background on

average-case complexity.

The central open question in this area is whether Heuristica

exists. That is, does worst-case hardness on NP such as

NP �⊆ BPP imply DistNP �⊆ AvgP? Worst-case to average-

case reductions are known for complexity classes much higher

than NP, or specific problems in NP∩ coNP: For complexity

classes above the polynomial-time hierarchy such as PSPACE
and EXP, a general technique based on error-correcting codes

provides a worst-case to average-case reduction (cf. [26]–

[28]).

Problems based on lattices admit worst-case to average-case

reductions from some problems in NP∩coNP to distributional

NP problems. In a seminal paper of Ajtai [29], it is shown that

an approximation version of the shortest vector problem of a

lattice in R
n admits a worst-case to average-case reduction.

The complexity of approximating the length of a shortest vec-

tor depends greatly on an approximation factor. A worst-case

to average-case reduction is known when an approximation

factor is larger than Õ(n) [30]. Note that Heuristica does not

exist if this approximation problem is NP-hard; however, this

is unlikely because approximating the length of a shortest

vector within a factor of O(
√
n) is in NP ∩ coNP [31].

Some NP-hardness is known for an approximation factor of

nO(1/ log logn) [32].

D. Barriers for Worst-case to Average-case Reductions in NP

There are significant obstacles to establishing worst-case

to average-case connections for NP-complete problems (e.g.,

[26], [33]–[37]). A standard technique to establish worst-

case to average-case connections is by “black-box” reductions,

meaning that a hypothetical heuristic algorithm is regarded as

a (possibly inefficient) oracle. Building on Feigenbaum and

Fortnow [26], Bogdanov and Trevisan [33] showed that if a

language L reduces to a distributional NP problem via a black-

box nonadaptive randomized polynomial-time reduction, then

L ∈ NP/poly∩coNP/poly. Here, the advice “/poly” is mainly

used to encode some information about the distributional prob-

lem, and can be removed in some cases such as a reduction

to inverting one-way functions [35], [38] or breaking hitting

set generators [37]. Therefore, in order to reduce any problem

outside NP∩ coNP to a distributional NP problem, it is likely

that a non-black-box reduction technique is needed.2

2Here we implicitly used a popular conjecture that AM = NP [39], and
ignored the possibility that an adaptive black-box reduction could be used to
overcome the barriers.
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Gutfreund, Shaltiel and Ta-Shma [40] developed a non-

black-box technique to show a worst-case to “average-case”

reduction; however, the notion of “average-case” is different

from the usual one. They showed that, under the assumption

that P �= NP, for every polynomial-time algorithm A trying to

compute SAT, there exists an efficiently samplable distribution

DA under which A fails to compute SAT on average. The hard

distribution DA depends on a source code of A, and hence it is

not necessarily true that there exists a fixed distribution under

which SAT is hard on average.

In contrast, we consider the following two simple distribu-

tions. One is the uniform distribution, denoted by U , under

which an instance x of size m is generated by choosing

x ∈R {0, 1}m uniformly at random. The other is a uniform

distribution with auxiliary unary input, denoted by Du, under

which an instance (x, 1t) of size m is generated by choosing

an integer t ∈R {1, . . . ,m} and a string x ∈R {0, 1}m−t

uniformly at random.

E. Our Results

The main contribution of this paper is to present the first

non-black-box worst-case to average-case reduction from a

problem conjectured to be outside NP ∩ coNP to a distribu-

tional NP problem.

Recall the notion of time-bounded Kolmogorov complexity:

For a string x ∈ {0, 1}∗, the Kolmogorov complexity Kt(x) of

x within time t is defined as the length of a shortest program

M such that M outputs x within t steps. For example, 0n

can be described as “output 0 n times,” which can be encoded

as a binary string of length log n + O(1); thus Kt(0
n) =

log n+O(1) for a sufficiently large t. Kolmogorov complexity

enables us to define the notion of randomness for a finite string

x. We say that a string x ∈ {0, 1}∗ is r-random with respect

to Kt if Kt(x) ≥ r(|x|), for a function r : N→ N.

Our main technical result is a search to average-case reduc-

tion between the following two problems. One is a search

problem of approximating Kt(x) within an additive error

term of Õ
(√

Kt(x)
)

on input (x, 1t), where Õ hides some

polylog(|x|) factor. The other is a distributional NP problem,

denoted by (MINKT[r],Du), of deciding, on input (x, 1t)
sampled from Du, whether x is not r-random with respect to

Kt.

Theorem I.1 (Main). Let r : N→ N be any function such that
for some constant c > 0, for all large n ∈ N, n−c

√
n log n ≤

r(n) < n. Assume that (MINKT[r],Du) ∈ Avg1/6mP. Then,
for some function σ(n, s) = s+O

(
(log n)

√
s+(log n)2

)
and

some polynomial τ(n, t), there exists a zero-error randomized
polynomial-time algorithm that, on input (x, 1t), outputs a
program M of size |M | ≤ σ(|x|,Kt(x)) such that M outputs
x in τ(|x|, t) steps.

There is a natural decision version associated with the search

problem above, denoted by Gapσ,τMINKT. This is the

promise problem of deciding, on input (x, 1t, 1s), whether

Kt(x) ≤ s or Kt′(x) > σ(|x|, s) for t′ = τ(|x|, t). Using The-

orem I.1, we prove the following worst-case and average-case

equivalence between the worst-case problem Gapσ,τMINKT
and the distributional NP problem (MINKT[r],Du).

Corollary I.2. In the following list, we have 1⇒ 2⇒ 3⇒ 4.
Moreover, if Promise-ZPP = Promise-P, then we also have
4⇒ 2.

1) DistNP ⊆ AvgP.
2) (MINKT[r],Du) ∈ Avg1/6mP for some r : N→ N such

that n−O
(√

n log n
) ≤ r(n) < n for all large n ∈ N.

3) There exists a zero-error randomized polynomial-time
algorithm solving the search version of Gapσ,τMINKT,
for some σ(n, s) = s + O

(
(log n)

√
s + (log n)2

)
and

some polynomial τ(n, t).
4) Gapσ,τMINKT ∈ Promise-ZPP for some σ(n, s) =

s + O
(
(log n)

√
s + (log n)2

)
and some polynomial

τ(n, t).

Note that the derandomization hypothesis Promise-ZPP =
Promise-P follows from the plausible circuit lower bound E �⊆
i.o.SIZE(2Ω(n)) [41].

We also establish similar results for MCSP. Specifically,

we show that the complexity of the following two problems

is the same with respect to BPP algorithms. One is a promise

problem, denoted by GapεMCSP for a constant ε > 0, of

approximating the minimum circuit size within a factor of

2(1−ε)n on input the truth table of a function f : {0, 1}n →
{0, 1}. The other is a distributional NP problem, denoted by

(MCSP[2εn],U) for a constant ε > 0, of deciding whether the

minimum circuit size is at most 2εn given the truth table of a

function f : {0, 1}n → {0, 1} chosen uniformly at random.

Theorem I.3. The following are equivalent.
1) GapεMCSP ∈ Promise-BPP for some ε > 0.
2) There exists a randomized polynomial-time algorithm

solving the search version of GapεMCSP for some
ε > 0.

3) (MCSP[2εn],U) ∈ AvgBPP for some constant ε ∈
(0, 1).

Previously, an equivalence between the worst-case and

average-case complexity of MCSP with respect to “feasibly-

on-average” algorithms (meaning that the error set of an

algorithm is recognized by some efficient algorithm) was

shown under the assumption that one-way functions exist [17];

however, the assumption is so strong that the equivalence

becomes trivial when the feasibly-on-average algorithm itself

is an efficient algorithm. Independently of our work, Igor

C. Oliveira and Rahul Santhanam (personal communication)

obtained a worst-case to average-case connection for a version

of MCSP called MAveCSP, which asks if there exists a small

circuit approximating a given function f .

F. Hardness of GapMINKT

We argue that our techniques are essentially non-black-

box. If Theorem I.1 were established via a nonadaptive black-

box worst-case to average-case reduction, then by using the

techniques of Bogdanov and Trevisan [33], we would obtain

Gapσ,τMINKT ∈ coNP/poly. This is unlikely, as we discuss
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below. (In fact, our non-black-box reduction can be regarded

as a nonadaptive reduction to breaking a hitting set generator;

thus, the advice “/poly” is not indispensable [37].)

Unfortunately, basing hardness of MCSP or MINKT on

worst-case hardness assumptions is a very challenging task.

The best known worst-case hardness result for MCSP (which

also holds for MINKT) is SZK (statistical zero knowledge)

hardness, which is proved by inverting some auxiliary-input

one-way function (Allender and Das [11]). This cannot be

seen as evidence that MCSP �∈ coNP since SZK ⊆ AM ∩
coAM. There is evidence that the SZK-hardness is the best that

one can hope for the current reduction techniques: A certain

(one-query randomized) reduction technique called an oracle-
independent reduction [14] cannot be used to base hardness of

MCSP on any problem beyond AM∩coAM. Here, a reduction

to MCSP is said to be oracle-independent if the reduction can

be generalized to a reduction to MCSPA for every oracle A.

Fortunately, we can still argue hardness of MCSP or

MINKT based on average-case assumptions. Indeed, MKTP
is known to be Random 3SAT-hard [17], which provides

evidence that MKTP �∈ coNP. To prove similar average-case

hardness results, we observe that, given Gapσ,τMINKT as

oracle, one can break any hitting set generator.

Proposition I.4. Let σ, τ be the parameters as in The-
orem I.1. Any efficiently computable hitting set generator
H = {Hn : {0, 1}n → {0, 1}n+ω̃(

√
n)}n∈N is not secure

against a polynomial-time algorithm with oracle access to
Gapσ,τMINKT.

This is because any range of a hitting set generator is not

random in the sense of time-bounded Kolmogorov complexity;

thus, to test whether x is in the range of H , it suffices to check

whether Kt(x) is small.

One example of hitting set generators conjectured to be

secure against nondeterministic algorithms comes from the

natural proof framework. Rudich [42] conjectured that there

is no NP/poly-natural property useful against P/poly. In

particular, under his conjecture, we have Gapσ,τMINKT �∈
coNP/poly.

More importantly, Random 3SAT can be viewed as a

hitting set generator (which extends its seed of length N by

Ω(N/ logN) bits) that is conjectured to be secure against

coNP algorithms. Random 3SAT is a widely investigated

problem algorithmically (e.g., [43]–[45]). This is the problem

of checking the satisfiability of a 3CNF formula randomly

generated by choosing m clauses uniformly at random from all

the possible clauses on n variables. The best coNP algorithm

solving Random 3SAT on average is the algorithm given by

Feige, Kim and Ofek [45], which works when m > O(n7/5);
this is better than the best deterministic algorithm, which

works when m > O(n3/2) [44].

We show that if Gapσ,τMINKT ∈ coNP, there is a

much better algorithm than [45]; specifically, for any constant

Δ > 1/ log(8/7) ≈ 5.19 and for m := Δn, Random 3SAT

with m clauses can be solved by an errorless coNP algorithm

with probability 1− 2−Ω(n). Ryan O’Donnell (cf. [17], [46])

conjectured that there is no coNP algorithm solving Random

3SAT with m = Δn clauses for a sufficiently large constant

Δ with high probability. Thus under his conjecture, we have

Gapσ,τMINKT �∈ coNP.

G. Perspective: An Approach Towards Excluding Heuristica

We propose a research program towards excluding Heuris-

tica through the lens of MCSP or MINKT. Note that if

NP ≤BPP
T Gapσ,τMINKT then we obtain the following by

Theorem I.1: If NP �⊆ BPP then DistNP �⊆ AvgP, which

means that Heuristica does not exist.

Unfortunately, there are still several obstacles we need to

overcome in order for this research program to be completed.

Although our proofs overcome the limits of black-box reduc-

tions, our proofs do relativize. And there is a relativization

barrier for excluding Heuristica: Impagliazzo [36] constructed

an oracle A such that DistNPA ⊆ AvgPA and NPA ∩
coNPA �⊆ PA/poly. Under the same oracle, it follows from a

relativized version of Theorem I.1 that Gapσ,τMINKTA is not

NPA-hard under PA/poly-Turing reductions. Thus it requires

some nonrelativizing technique to establish NP-hardness of

Gapσ,τMINKT even under P/poly-Turing reductions. (Previ-

ously, Ko [3] constructed a relativized world where MINKT
is not NP-hard under P-Turing reductions.)

We also mention that there are a number of results (e.g. [2],

[4], [5], [12]–[14], [18]) showing that proving NP-hardness

(under reducibility notions stronger than P/poly-Turing re-

ductions) of MCSP is extremely difficult or impossible. For

example, Murray and Williams [12] showed that MCSP is

provably not NP-hard under some sublinear time reductions;

similarly, NP-hardness of GapMCSP under polynomial-time

Turing reductions implies EXP �= ZPP [14], which is a

notorious open question.

Now we conjecture that the following is a feasible research

question.

Conjecture I.5. Let σ, τ be the parameters as in Theorem I.1.
Gapσ,τMINKT is NP-hard under coNP/poly-Turing reduc-
tions. That is, NP ⊆ coNPA/poly for any oracle A solving
Gapσ,τMINKT.

Note that the choice of reducibility is somewhat subtle: The

relativization barrier applies to P/poly reductions, but it is

not known whether a similar barrier applies to coNP/poly
reductions. Ko [3] also speculated that MINKT might be

NP-complete under NP ∩ coNP reductions. We mention that

there is a nonrelativizing proof technique to prove PSPACE-

completeness of a space-bounded version of MINKT (cf. [4]).

A positive answer to Conjecture I.5 implies the following:

If NP �⊆ coNP/poly, then DistNP �⊆ AvgP. This will base the

hardness of DistNP on a plausible worst-case assumption of

NP, and in particular, an assumption that the polynomial-time

hierarchy does not collapse. Currently, no worst-case hardness

assumption on the polynomial-time hierarchy is known to

imply DistNP �⊆ AvgP.
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H. Our Techniques

At a high level, our contributions are to further explore the

interplay between Kolmogorov-randomness and the hardness

versus randomness framework. Allender, Buhrman, Koucký,

van Melkebeek, Ronneburger [4] exploited the interplay and

presented a number of results on the power of Kolmogorov-

random strings: Pseudorandom bits are not Kolmogorov-
random, and hence the set of Kolmogorov-random strings

can be used to break pseudorandom generators, based on

which they demonstrated the power of Kolmogorov-random

strings. For this purpose, they used previously constructed

pseudorandom generators in a black-box manner. In contrast,

we open the black box and take a closer look at the interplay

between Kolmogorov-randomness and pseudorandomness.

Specifically, our starting point is the Nisan-Wigderson gen-

erator [47]. They presented a (complexity-theoretic) pseudo-

random generator NWf secure against small circuits, based on

any “hard” function f (in the sense that f cannot be approx-

imated by small circuits, that is, Prx[f(x) = C(x)] ≤ 1
2 + ε

for some small ε > 0 and any small circuit C).

Its security is proved by the following reduction: Given

any statistical test T that distinguishes the output distribution

of NWf from the uniform distribution, one can construct a

small T -oracle circuit CT that approximates f . If T can be

implemented by a small circuit, then this is a contradiction

to the assumption that f is hard; thus the pseudorandom

generator is secure. Such a security proof turns out to be

quite fruitful not only for derandomization [39], [48], [49],

but also for Trevisan’s extractor [50], investigating the power

of Kolmogorov-random strings [4], and the generic connection

between learning and natural proof [15].

Our proofs also make use of a security proof. It enables

us to transform any statistical test T for NWf to a small

circuit CT that describes a ( 12 + ε)-fraction of the truth table

of f . Moreover, as observed in [48], such small circuits can

be constructed efficiently. By using a list-decodable error-

correcting code Enc, given any statistical test T for NWEnc(x),

one can efficiently find a short description for x under the

oracle T .

We argue that there is a statistical test T for NWEnc(x)

under the assumption that DistNP ⊆ AvgP. Consider the dis-

tributional NP problem (MINKT[r],Du). A crucial observa-

tion is that there are few nonrandom strings (i.e., compressible

by a short program); that is, there are few YES instances

in MINKT[r]. Thus any errorless heuristic algorithm solv-

ing (MINKT[r],Du) must reject a large fraction of random

strings. This gives rise to a dense subset T ∈ P of random

strings, and it can be shown that T is a statistical test for any

hitting set generator.

As a consequence, we obtain an efficient algorithm that,

on input x, outputs a short program d describing x under the

oracle T . Since T can be accepted by some polynomial-time

algorithm (that comes from the errorless heuristic algorithm

for (MINKT[r],Du)), we can describe x by using the descrip-

tion d and a source code of the algorithm accepting T . This is

the crucial part in which our proof is non-black-box; we need

a source code of the errorless heuristic algorithm in order to

have a short description for x. We then obtain a randomized

polynomial-time search algorithm for Gapσ,τMINKT.

The proof sketch above enables us to find a somewhat short

description, but it is not sufficient to obtain a description of

length (1 + o(1)) · Kt(x), nor to obtain the Random 3SAT-

hardness of Gapσ,τMINKT. To optimize the quality of the

approximation, we need to exploit an improvement of the

Nisan-Wigderson generator (and Trevisan’s extractor), given

by Raz, Reingold and Vadhan [51].

Finally, the randomized algorithm described above can be

made zero-error; indeed, if DistNP ⊆ AvgZPP, then any

randomized algorithm can be made zero-error (as mentioned

in [1] without a proof). This is because a Kolmogorov-random

string w can be found by picking a string uniformly at random,

and one can check whether w is Kolmogorov-random or not

by using an errorless heuristic algorithm for (MINKT[r],Du);
by using w as a source of a hard function and invoking

the hardness versus randomness framework again, we can

derandomize the rest of the randomized computation. (The

zero-error algorithm may fail only if no Kolmogorov-random

string is found.)

Interestingly, we invoke the hardness versus randomness

framework twice for completely different purposes. On one

hand, to derandomize a randomized computation, it is desir-

able to minimize the seed length of a pseudorandom generator,

because we need to exhaustively search all the seeds. On the

other hand, to obtain a short description, it is desirable to

minimize the output length of a pseudorandom generator (or,

in other words, to maximize the seed length); this is because

the efficiency of the security proof is dominated by the output

length.

To prove a similar equivalence between worst-case and

average-case hardness of MCSP, there is one difficulty: An

error-correcting code Enc may significantly increase the cir-

cuit complexity of f . As a consequence, for a function f
that can be computed by a small circuit, the circuit com-

plexity of the output of NWEnc(f) is not necessarily small,

and thus an errorless heuristic algorithm for MCSP may

not induce a statistical test for NWEnc(f); here, the circuit

complexity of a string x refers to the size of a smallest

circuit whose truth table is x. Nevertheless, it is still possible

to amplify the hardness of f while preserving the circuit

complexity of f . Indeed, Carmosino, Impagliazzo, Kabanets,

and Kolokolova [15] established a generic reduction from

approximately learning to natural properties, by using the

fact that a natural property is a statistical test for NWAmp(f),

where Amp(f) denotes a hardness amplified version of f . We

observe that their approximately learning is enough to achieve

the approximation factor stated in Theorem I.3. Moreover, as

shown by Hirahara and Santhanam [17], a natural property

is essentially an errorless heuristic algorithm for MCSP. By

combining these results, we obtain a search to average-case

reduction for GapMCSP.
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Open Problems: In addition to the main open problem

(Conjecture I.5), there are several open problems unan-

swered in this paper. In Theorem I.1, we assumed that

there exists an errorless heuristic deterministic algorithm for

(MINKT[r],Du); we do not know whether Gapσ,τMINKT
is easy if DistNP ⊆ AvgZPP. A naive approach is to

have a description that incorporates random bits of AvgZPP
algorithms, but it spoils the quality of the approximation.

Another open question is whether a similar non-black-box

reduction is possible for HeurP, that is, a heuristic algorithm

that may err. We crucially rely on the fact that there are few

YES instances in MINKT[r], and hence our techniques do not

seem to be easily extended to the case of a heuristic algorithm

with error.

Organization: In Section II, we review background on

Kolmogorov complexity. Then in Section III, we give a search

to average-case reduction for MINKT, assuming the existence

of some oracle; the existence of the oracle is justified in

Section IV, which completes the proof of Theorem I.1. In

Section V, we present evidence against MINKT ∈ coNP.

Section VI is devoted to proving Theorem I.3. Due to space

limitations, some details are omitted in this version.

II. PRELIMINARIES

Notation: For an integer n ∈ N, let [n] := {1, . . . , n}. For

a language A ⊆ {0, 1}∗ and an integer n ∈ N, let A=n :=
A ∩ {0, 1}n.

For a finite set D, we indicate by x ∈R D that x is

picked uniformly at random from the set D. For a probability

distribution D, we indicate by x ∼ D that x is a random

sample from D.

For a function f : {0, 1}� → {0, 1}, we denote by tt(f) its

truth table, i.e., f(z1) · · · f(z2�) where z1, . . . , z2� ∈ {0, 1}�
are all the strings of length � in the lexicographic ordering.

We will sometimes identify a function f and its truth table

tt(f), and vice versa.

Language: A set L ⊆ {0, 1}∗ of strings is called a

language. We identify L with its characteristic function

L : {0, 1}∗ → {0, 1} such that L(x) = 1 iff x ∈ L for every

x ∈ {0, 1}∗.
Promise Problem: A promise problem is a pair (LY, LN) of

languages LY, LN ⊆ {0, 1}∗ such that LY ∩ LN = ∅, where

LY and LN are regarded as the set of YES and NO instances,

respectively. If LY = {0, 1}∗ \LN, we identify (LY, LN) with

the language LY ⊆ {0, 1}∗. We say that a language A solves
a promise problem (LY, LN) if LY ⊆ A ⊆ {0, 1}∗ \ LN. For

a complexity class C such as ZPP and BPP, we denote by

Promise-C the promise version of C.

Circuits: For a Boolean circuit C, we denote by |C| the size

of circuit C; the measure of circuit size (e.g., the number of

gates, wires or the description length) is not important for our

results; for concreteness, we assume that the size is measured

by the number of gates. We identify a circuit C on n variables

with the function C : {0, 1}n → {0, 1} computed by C. For a

Boolean function f : {0, 1}n → {0, 1}, denote by size(f) the

size of a minimum circuit C computing f .

Kolmogorov Complexity: We fix any efficient universal
Turing machine U . This is a Turing machine that takes as

input a description of any Turing machine M together with a

string x, and simulates M on input x efficiently. We will only

need the following fact.

Fact II.1 (Universal Turing machine). There exists a poly-
nomial pU such that, for any machine M , there exists some
description dM ∈ {0, 1}∗ of M such that, for every input
x ∈ {0, 1}∗, if M(x) stops in t steps for some t ∈ N then
U(dM , x) outputs M(x) within pU (t) steps.

For simplicity of notation, we identify M with its description

dM . We sometimes regard pU (t) = t for simplifying state-

ments of claims. For a string x, its Kolmogorov complexity is

the length of a shortest description for x. Formally:

Definition II.2 (Time-bounded Kolmogorov complexity). For
any oracle A ⊆ {0, 1}∗, any string x ∈ {0, 1}∗, and any
integer t ∈ N, the Kolmogorov complexity of x within time
t relative to A is defined as KA

t (x) := min{ |d| | UA(d) =
x in t steps }.

To explain a consequence of the security proof of the

Nisan-Wigderson generator, it is convenient to introduce an

approximation version of Kolmogorov complexity.

Definition II.3 (Approximation version of Time-bounded Kol-

mogorov complexity). For functions f, g : {0, 1}� → {0, 1},
define dist(f, g) := Prx∈R{0,1}� [f(x) �= g(x)]. For a function
f : {0, 1}� → {0, 1}, an integer t ∈ N, and an oracle
A ⊆ {0, 1}∗, define KA

t,δ(f) as the minimum length of a string
d such that UA(d) outputs tt(g) of length 2� within t steps
and dist(f, g) ≤ 1/2− δ.

Problems on Kolmogorov Complexity: MINKT is a prob-

lem asking for the time-bounded Kolmogorov complexity of

x on input x and a time bound t.

Definition II.4 (Ko [3]). For any oracle A ⊆ {0, 1}∗, define
MINKTA := { (x, 1t, 1s) | KA

t (x) ≤ s }.
It is easy to see that MINKT ∈ NP, by guessing a certificate

d of length at most s, and checking whether U(d) outputs

x within t steps. Such a certificate for MINKT will play a

crucial role; thus we formalize it next.

Definition II.5. For an oracle A ⊆ {0, 1}∗, integers s, t ∈ N,
and a string x ∈ {0, 1}∗, a string d ∈ {0, 1}∗ is called a
certificate for KA

t (x) � s if UA(d) outputs x within t steps
and |d| ≤ s. A certificate for KA

t, δ(x) � s is defined in a
similar way.

In this terminology, for proving Theorem I.1, on input (x, 1t),
we seek a certificate for

Kt′(x) � Kt(x) +O
(
(log |x|)

√
Kt(x) + (log |x|)2)

for some t′ = poly(|x|, t). Note here that “�” is just a symbol,

and “Kt(x) � s” should be interpreted as a tuple (x, 1t, 1s),
which is an instance of MINKT.
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We also define a promise version of MINKT, parameterized

by σ and τ .

Definition II.6 (Promise version of MINKT). Let σ, τ : N ×
N→ N be any functions such that σ(n, s) ≥ s and τ(n, t) ≥ t
for any n, s, t ∈ N. Gapσ,τMINKT is a promise problem
defined as follows.

• YES instances: (x, 1t, 1s) such that Kt(x) ≤ s.
• NO instances: (x, 1t, 1s) such that Kt′(x) > σ(|x|, s) for

t′ := τ(|x|, t).
When σ(n, s) = s and τ(n, t) = t, the promise problem

Gapσ,τMINKT coincides with MINKT. It is also convenient

to define the search version of Gapσ,τMINKT.

Definition II.7 (Search version of Gapσ,τMINKT). For any
functions σ, τ as in Definition II.6, the search version of
Gapσ,τMINKT is defined as follows.

• Inputs: A string x ∈ {0, 1}∗ and an integer t ∈ N

represented in unary.
• Output: A certificate for Kt′(x) � σ(|x|,Kt(x)) for any

t′ ≥ τ(|x|, t).
A randomized algorithm A is called a zero-error randomized
algorithm solving the search version of Gapσ,τMINKT if, for
every x ∈ {0, 1}∗ and t ∈ N, A(x, 1t) outputs a certificate for
Kt′(x) � σ(|x|,Kt(x)) whenever A(x, 1t) �= ⊥, and A(x, 1t)
outputs ⊥ with probability at most 1

2 .

We will show that, if every distributional NP can be solved

by some errorless heuristic polynomial-time algorithm, then

the search version of Gapσ,τMINKT can be solved by a zero-

error randomized polynomial-time algorithm for σ(n, s) :=
s+O

(
(log n)

√
s+(log n)2

)
and some polynomial τ(n, t). As

a corollary, we also obtain Gapσ,τMINKT ∈ Promise-ZPP
because of the following simple fact.

Fact II.8 (Decision reduces to search). Let σ, τ : N×N→ N

be any efficiently computable and nondecreasing functions.
If there exists a zero-error randomized polynomial-time al-
gorithm solving the search version of Gapσ,τMINKT, then
Gapσ,τMINKT ∈ Promise-ZPP.

The following is the crucial lemma in which our proof is

non-black-box.

Lemma II.9. Let T ∈ P. Then there exists some polynomial
p such that Kt′(x) ≤ KT

t (x) +O(1) for any x ∈ {0, 1}∗ and
any t, t′ such that t′ ≥ p(t). Moreover, given a certificate for
KT

t (x) � s, one can efficiently find a certificate for Kt′(x) �
s+O(1).

We will use this lemma for an errorless heuristic polynomial-

time algorithm accepting T (in Theorem I.1). Thus, the output

of our non-black-box reduction will be a certificate for Kt′(x)
which incorporates a source code of the errorless heuristic

polynomial-time algorithm.

III. SEARCH TO AVERAGE-CASE REDUCTIONS FOR

MINKT

In this section, we present an efficient algorithm that outputs

a certificate for GapMINKT, given an oracle that accepts

some dense subset of random strings. The existence of such an

oracle will be justified in the next section under the assumption

that DistNP ⊆ AvgP. We start with the definitions about an

oracle. A string x ∈ {0, 1}∗ is said to be random if x does

not have a shorter description than itself. More generally:

Definition III.1 (r-random). Let r : N→ N be a function. We
say that a string x is r-random with respect to Kt if Kt(x) ≥
r(|x|). Let Rt[r] denote the set of all r-random strings with
respect to Kt.

Definition III.2 (dense). For every m ∈ N and δ ∈ [0, 1],
we say that a set A ⊆ {0, 1}m of strings is δ-dense if
Prw∈R{0,1}m [w ∈ A] ≥ δ.

In particular, a set A ⊆ {0, 1}m is called a δ-dense subset of

r-random strings Rt[r] if A ⊆ Rt[r] and |A| ≥ 2mδ.

The main idea is that a dense subset of random strings

gives rise to a statistical test distinguishing any pseudorandom

generator from the uniform distribution. Indeed, take any

efficiently computable function G : {0, 1}d → {0, 1}m where

d � r(m); then any range G(z) of G can be described by

its seed z in polynomial time; hence G(z) is not r-random

since Kt(G(z)) � d � r(m); thus a δ-dense subset T of

r-random strings is a statistical test for G with advantage

δ, i.e.,
∣∣Prw∈R{0,1}m [w ∈ T ]− Prz∈R{0,1}d [G(z) ∈ T ]

∣∣ ≥ δ.

We will use this fact to break the Nisan-Wigderson generator.

We proceed to define the Nisan-Wigderson generator NWf .

Originally, Nisan and Wigderson [47] defined the notion of

design as a family of subsets S1, . . . Sm such that |Si ∩ Sj |
is small for every distinct i, j ∈ [m]. As observed by Raz,

Reingold and Vadhan [51], a weaker notion is sufficient for a

security proof of the Nisan-Wigderson generator. Our notion

is, however, different from the weak design defined in [51]

due to some technical details.

Definition III.3. We say that a family S = (S1, . . . , Sm) of
subsets of [d] is a (�, ρ)-design if |Si| = � and

∑i−1
j=1 2

|Si∩Sj |+
m− i ≤ ρm for every i ∈ [m].

There is an efficient way to construct such a family with nice

parameters.

Lemma III.4 (follows from [51, Lemma 15]). For any
m, �, d ∈ N such that d/� ∈ N, there exists a (�, exp(�2/d))-
design Sm,�,d = (S1, . . . , Sm) ⊆ (

[d]
�

)
. Moreover, the family

Sm,�,d can be constructed by a deterministic algorithm in time
poly(m, d).

Proof Sketch. Raz, Reingold and Vadhan [51] showed how

to construct, in time poly(m, d), a family of subsets

S1, . . . , Sm ⊆ [d] of size � such that
∑i−1

j=1 2
|Si∩Sj | ≤

(1 + �/d)� · (i − 1) ≤ exp(�2/d) · i for every i ∈ [m]. (The

family is constructed by dividing [d] into � disjoint blocks

of size d/�, and, for each i ∈ [m], choosing one random
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element out of each block and adding it to Si. The con-

struction can be derandomized by the method of conditional

expectations.) The same family satisfies the condition that∑i−1
j=1 2

|Si∩Sj |+m− i ≤ exp(�2/d) ·m for every i ∈ [m]. �

For a string z ∈ {0, 1}d and a subset S = {i1 < · · · <
i�} ⊆ [d], we denote by zS ∈ {0, 1}� the string zi1 · · · zi� .

To avoid introducing a new variable, we treat d/� as if it is a

variable.

Definition III.5 (Nisan-Wigderson generator [47]). For a
function f : {0, 1}� → {0, 1} and parameters m, �, d/� ∈ N,
define the Nisan-Wigderson generator NWf

m,d : {0, 1}d →
{0, 1}m as NWf

m,d(z) := f(zS1
) · · · f(zSm

) for every z ∈
{0, 1}d, where (S1, . . . , Sm) := Sm,�,d.

Nisan and Wigderson [47] showed that if f is a hard

function (i.e. f cannot be approximated by small circuits)

then NWf
m,d is a pseudorandom generator secure against small

circuits. The security proof of the Nisan-Wigderson generator

transforms any statistical test for NWf
m,d into a small circuit

that approximately describes f . Moreover, as observed in [48],

such small circuits can be constructed efficiently. We now

make use of these facts to obtain a short description for f .

Our proof is similar to the construction of Trevisan’s extractor

[50], but we need to argue the efficiency.

Lemma III.6. There exist some polynomial poly and a
randomized polynomial-time oracle machine satisfying the
following specification.

Inputs: A function f : {0, 1}� → {0, 1} represented as its truth
table, parameters m, d/�, δ−1 ∈ N represented in unary, and
oracle access to T ⊆ {0, 1}m.

Promise: We assume that the oracle T is a statistical test for
NWf

m,d with advantage δ. That is,
∣∣∣∣ E
z∈R{0,1}d

[
T (NWf

m,d(z))
]
− E

w∈R{0,1}m

[
T (w)

]∣∣∣∣ ≥ δ. (1)

Output: A certificate for KT
t, δ/2m(f) � exp(�2/d) ·m + d +

O(log(md)), for any t ≥ poly(m, d, 2�).

Proof. We first prove KT
t, δ/m(f) ≤ exp(�2/d) · m + d +

O(log(md)). We will then explain how to obtain a certificate

efficiently (with the small loss in the quality δ/m of the

approximation).

The first part is proved by a standard hybrid argument as in

[47]. Without loss of generality, we may ignore the absolute

value of (1); more precisely, let Tb(w) := T (w) ⊕ b for

some b ∈ {0, 1} so that Ez,w

[
Tb(NWf

m,d(z))− Tb(w)
]
≥ δ.

For every i ∈ [m], define a hybrid distribution Hi :=
f(zS1

) · · · f(zSi
) · wi+1 · · ·wm for z ∈R {0, 1}d and w ∈R

{0, 1}m. As H0 and Hm are distributed identically to w ∈R

{0, 1}m and NWf
m,d(z) for z ∈R {0, 1}d, respectively, we

have E [Tb(Hm)− Tb(H0)] ≥ δ. Pick i ∈R [m] uniformly at

random. Then we obtain Ei [Tb(Hi)− Tb(Hi−1)] ≥ δ/m.

We can exploit this advantage to predict the next bit

of the PRG (due to Yao [52]; a nice exposition can be

found in [53, Proposition 7.16]). For each fixed i ∈ [m],
c ∈ {0, 1}, w[m]\[i] ∈ {0, 1}m−i, and z[d]\Si

∈ {0, 1}d−�,

consider the following circuit PTb for predicting f : On input

x ∈ {0, 1}�, set zSi
:= x and construct z ∈ {0, 1}d.

Output Tb(f(zS1) · · · f(zSi−1) · c · wi+1 · · ·wm) ⊕ c ⊕ 1. A

basic idea here is that if c = f(zSi) (= f(x) ) then the

input distribution of Tb is identical to Hi and thus Tb is

likely to output 1, in which case we should output c for

predicting f . By a simple calculation, it can be shown that

Pr[PTb(x) = f(x)] ≥ 1
2 + δ

m , where the probability is taken

over all i ∈R [m], c ∈R {0, 1}, w[m]\[i] ∈R {0, 1}m−i,

z[d]\Si
∈R {0, 1}d−�, and x ∈R {0, 1}�. In particular, by

averaging, there exists some i, c, w[m]\[i], z[d]\Si
such that

Prx∈R{0,1}�
[
PTb(x) = f(x)

] ≥ 1
2 + δ

m .

Therefore, it is sufficient to claim that the circuit P has

a small description. Note that the value of f needed in

the computation of P can be hardwired into the circuit

using
∑

j<i 2
|Si∩Sj | bits. Given oracle access to T , we can

describe the ( 12 + δ
m )-fraction of the truth table of f by

specifying m, �, d, b, c, i, w[m]\[i], z[d]\Si
, and the hardwired

table of the values of f . This procedure takes time roughly

poly(m, d)+poly(2�) (for computing the design and evaluating

the entire truth table of PTb ). The length of the description is

at most
∑

j<i 2
|Si∩Sj | + (m− i) + (d− �) + O(log(md)) ≤

exp(�2/d) ·m+d+O(log(md)). Thus we have KT
t, δ/m(f) ≤

exp(�2/d) ·m+ d+O(log(md)).
To find a certificate efficiently, observe that a random

choice of (c, i, w[m]\[i], z[d]\Si
) is sufficient in order for the

argument above to work. That is, pick c ∈R {0, 1}, i ∈R [m],
w[m]\[i] ∈R {0, 1}m−i, and z[d]\Si

∈R {0, 1}d−�. Then a

Markov style argument shows that, with probability at least

δ/2m, we obtain Prx∈R{0,1}�
[
PTb(x) = f(x)

] ≥ 1
2+

δ
2m . By

trying each b ∈ {0, 1} and trying the random choice O(m/δ)
times, we can find at least one certificate for KT

t,δ/2m(f) with

high probability. �

We will update Lemma III.6 by incorporating a list-

decodable error-correcting code, so that we obtain a certificate

for KT
t (x) instead of KT

t,δ/2m(f).

Definition III.7 (List-decodable error-correcting code; cf.

[53]). For every n,m,L ∈ N and ε > 0, a func-
tion Enc: {0, 1}n → {0, 1}m is called a (L, 1

2 − ε)-list-

decodable error-correcting code if there exists a function
Dec: {0, 1}m → ({0, 1}n)L such that, for every x ∈ {0, 1}n
and r ∈ {0, 1}m with dist(Enc(x), r) ≤ 1

2 − ε, we have
x ∈ Dec(r). We call Dec a list decoder of Enc.

For our purpose, it is sufficient to use any standard list-

decodable code such as the concatenation of a Reed-Solomon

code and an Hadamard code.

Theorem III.8 (see, e.g., [28] and [53, Problem 5.2]). For any
n ∈ N and ε > 0, there exists a function Encn,ε : {0, 1}n →
{0, 1}2� with � = O(log(n/ε)) that is a (poly(1/ε), 1

2 − ε)-
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list-decodable error-correcting code. Moreover, Encn,ε and its
list decoder Decn,ε are computable in time poly(n, 1/ε).

In what follows, we implicitly regard a string Encn,ε(x) ∈
{0, 1}2� of length 2� as a function on �-bit inputs.

Corollary III.9. KA
t′ (x) ≤ KA

t, ε(Encn,ε(x)) + O(log(n/ε))
for any string x ∈ {0, 1}∗, any oracle A, and any t′ ≥ t +
poly(n, 1/ε). Moreover, given any x and any certificate for
KA

t, ε(Encn,ε(x)) � s, one can find a certificate for KA
t′ (x) �

s + O(log(n/ε)) in time t + poly(n, 1/ε) with oracle access
to A.

Combining Lemma III.6 and the list-decodable error-

correcting code, we obtain the following.

Lemma III.10. There exist some polynomial poly and a
randomized polynomial-time oracle machine satisfying the
following specification.

Inputs: A string x ∈ {0, 1}∗ of length n ∈ N, parameters
m, d/�, δ−1 ∈ N represented in unary, and oracle access to
T ⊆ {0, 1}m.

Promise: Let ε := δ/2m, and 2� := |Encn,ε(x)|. We assume
that T is a statistical test for NW

Encn,ε(x)
m,d with advantage δ.

Output: A certificate for KT
t (x) � exp(�2/d) · m + d +

O(log(nmd/δ)) for any t ≥ poly(n,m, d, 1/δ).

As a consequence of Lemma III.10, for any x ∈ {0, 1}∗
and parameters with d � �2, we may obtain a certificate

of length ≈ exp(�2/d) · m + d ≈ m + �2m/d + d given a

statistical test for NW
Encn,ε(x)
m,d . Setting d := �

√
m, we obtain

a certificate of length ≈ m + O(�
√
m). We now claim that

m may be set to ≈ Kt(x), by showing that the output of

the Nisan-Wigderson generator is not random in the sense of

time-bounded Kolmogorov complexity.

Lemma III.11. There exists some polynomial poly satisfying
the following: For any n, ε−1,m, d/� ∈ N, z ∈ {0, 1}d and
x ∈ {0, 1}n (where 2� is the output length of Encn,ε), we have

Kt′(NW
Encn,ε(x)
m,d (z)) ≤ Kt(x) + d+O(log(nmd/ε))

for any t, t′ ∈ N with t′ ≥ t+ poly(n, 1/ε,m, d).

We now assume that an oracle T is a δ-dense subset of r-

random strings Rr[t]. By Lemma III.11, T is a distinguisher

for NW
Encn,ε(x)
m,d if Kt(x)+d � r(m). Thus by Lemma III.10

we may find a certificate for KT
t′(x) � exp(�2/d)·r−1(Kt(x)+

d) + d. A formal statement follows.

Theorem III.12. Let r : N → N be any function. There
exist some polynomial poly and a randomized polynomial-time
oracle machine satisfying the following specification.

Inputs: A string x ∈ {0, 1}∗ of length n ∈ N, parameters
t,m, d/�, δ−1 ∈ N represented in unary, and oracle access to
T ⊆ {0, 1}m.

Promise: Let ε := δ/2m, and 2� := |Encn,ε(x)|. Assume
that T is a δ-dense subset of Rr[t1] for some t1 ≥ t +

poly(n,m, d, 1/δ), and that Kt(x) + d + O(log(nmd/δ)) <
r(m).

Output: A certificate for KT
t2(x) � exp(�2/d) · m + d +

O(log(nmd/δ)) for any t2 ≥ poly(n,m, d, 1/δ).

By Theorem III.12, for r(m) ≈ m, we can set m ≈
Kt(x) + d; thus, we can find a certificate of length ≈
exp(�2/d) · (Kt(x) + d) + d ≈ Kt(x) + �2Kt(x)/d+2d+ �2.

By setting d := �
√
Kt(x), we obtain a certificate of length

≈ Kt(x) + O(�
√

Kt(x)) + �2. (Note here that we do not

know a priori the best choice of d as well as Kt(x); however

we can try all choices of d.) In the next corollary, we

observe that the same length can be achieved as long as

m−O(
√
m logm) ≤ r(m).

Corollary III.13. Let δ−1 ∈ N be any constant. Let r : N→ N

be any function such that m − c
√
m logm ≤ r(m), for

some constant c, for all large m ∈ N. There exist some
polynomial poly and a randomized polynomial-time oracle
machine satisfying the following specification.

Inputs: A string x ∈ {0, 1}∗ of length n ∈ N, a parameter
t ∈ N represented in unary, and oracle access to T ⊆ {0, 1}∗.
Promise: For all large m ∈ N, we assume that T=m is a
δ-dense subset of Rr[t1] for some t1 ≥ t+ poly(n).

Output: A certificate for KT
t2(x) � Kt(x) +

O
(
(log n)

√
Kt(x) + (log n)2

)
for any t2 ≥ poly(n).

IV. IN A WORLD OF HEURISTICA

In this section, we justify the hypothesis used in the previous

section, and sketch a proof of Theorem I.1. We show that if

(MINKT[r],Du) is easy on average then a dense subset of

r-random strings can be accepted. For any oracle T ⊆ {0, 1}∗
and any t ∈ N, let Tt denote {x ∈ {0, 1}∗ | (x, 1t) ∈ T }. The

main idea here is that since there are few r-nonrandom strings,

an errorless heuristic algorithm must succeed on a dense subset

of r-random strings.

Lemma IV.1. Let r : N → N be any function such that
r(n) < n for all large n ∈ N. If (MINKT[r],Du) ∈ AvgδP
for δ(m) := 1/6m, then there exists a language T ∈ P such
that T=n

t is a 1
3 -dense subset of Rt[r], for all large n ∈ N

and every t ∈ N.

Proof Sketch. Let M be the errorless heuristic deterministic

polynomial-time algorithm for (MINKT[r],Du). We define T
so that T (x, 1t) := 1 if M(x, 1t) = 0; otherwise T (x, 1t) :=
0, for every x ∈ {0, 1}∗ and t ∈ N. By this definition, it is

obvious that T ∈ P.

Fix any t ∈ N. We claim that Tt is a subset of r-

random strings Rt[r]. Indeed, for any x ∈ Tt, we have

M(x, 1t) = 0. Since M is an errorless heuristic algorithm,

we obtain Kt(x) ≥ r(|x|); thus x ∈ Rt[r].
We now claim that T=n

t is dense, i.e., Prx∈R{0,1}n [x ∈
Tt] ≥ 1

3 for all large n ∈ N. First, observe that even

if t is fixed, the errorless heuristic algorithm M solves

MINKT[r] with failure probability at most m · 1
6m . That
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is, for all large n ∈ N and any t ∈ N, we have

Prx∈R{0,1}n [M(x, 1t) �= MINKT[r](x, 1t)] ≤ 1
6 .

We claim that M must output 0 on a large fraction of

strings, which implies that T is dense. Indeed, there are few r-

nonrandom strings, so M must succeed on a large fraction of

random strings. More precisely, the number of r-nonrandom

strings of length n is at most
∑r(n)−1

i=0 2i ≤ 2r(n); thus,

the probability that (x, 1t) ∈ MINKT[r] over the choice of

x ∈R {0, 1}n is at most 2r(n)−n ≤ 1
2 , for all large n ∈ N and

every t ∈ N. Therefore, we obtain Prx∈R{0,1}n
[
x ∈ Tt

] ≥(
1− 1

6

)− 1
2 = 1

3 . �

Proof Sketch of Theorem I.1. By Lemma IV.1, there exists a

language T in P such that T=n
t is a 1

3 -dense subset of Rt[r]
for all large n ∈ N and every t ∈ N. Applying Corollary III.13

to Tt1 and δ−1 = 3, we obtain a randomized polynomial-time

oracle machine that, on input x of length n ∈ N, 1t, and with

oracle access to Tt1 , outputs a certificate d0 for K
Tt1
t2 (x) �

σ(n,Kt(x)) with high probability, for t1 ≥ t + poly(n) and

t2 ≥ poly(n). By using Lemma II.9, the certificate d0 under

a Tt1 oracle can be converted into a certificate without any

oracle with some small overhead. �

V. HARDNESS OF MINKT

In this section, we present evidence against

Gapσ,τMINKT ∈ coNP. We start with the definition

of hitting set generator, which is a stronger notion than

pseudorandom generator.

Definition V.1 (Hitting set generators). Let γ : N → [0, 1] be
a function. Let G := {Gn : {0, 1}s(n) → {0, 1}t(n)}n∈N be
a family of functions. A promise problem (LY, LN) is said
to γ-avoid G if for every n ∈ N, Gn(z) ∈ LN for any z ∈
{0, 1}s(n), and Prw∈R{0,1}t(n)

[
w ∈ LY

] ≥ γ(n). G is called
a hitting set generator γ-secure against a complexity class C
if there is no promise problem (LY, LN) ∈ C that γ-avoids G.

For a hitting set generator, we measure the time complexity

with respect to the output length t(n); that is, we say that a

family of functions G := {Gn : {0, 1}s(n) → {0, 1}t(n)}n∈N
is efficiently computable if there exists a polynomial-time

algorithm that, on input z ∈ {0, 1}s(n), computes Gn(z) in

time poly(t(n)) for all large n ∈ N.

Note that there is no efficiently computable hitting set

generator γ-secure against coNP for any “admissible” γ. On

the other hand, as we will see, it is conjectured that there

exists a hitting set generator secure against NP. We first claim

that there is no hitting set generator secure against PA for any

oracle A solving GapMINKT. For simplicity, we focus on

the case of t(n) = n.

Theorem V.2. Let σ, τ : N×N→ N be any functions such that
σ(n, s) ≥ s for any n, s ∈ N. Let G = {Gn : {0, 1}s(n) →
{0, 1}n}n∈N be any family of functions computable in time
poly(n), where s : N → N is an efficiently computable
function. Let γ : N → [0, 1] be any function such that
σ(n, s(n) + O(log n)) ≤ n − 1 + log(1 − γ(n)) for any

n ∈ N. Then, there exists a deterministic polynomial-time
oracle machine M (in fact, a one-query reduction) such that
MA γ-avoids G for any oracle A ⊆ {0, 1}∗ solving the
promise problem Gapσ,τMINKT.

In particular, for the parameter σ(n, s) := s+O
(
(log n)

√
s+

(log n)2
)

of Theorem I.1, Gapσ,τMINKT is capable of avoid-

ing any efficiently computable hitting set generator G =
{Gn : {0, 1}s(n) → {0, 1}n}n∈N such that s(n) ≤ n −
c
√
n log n for some large constant c > 0. In what follows, we

present specific candidate hitting set generators conjectured to

be secure against NP.

A. Natural Properties and Rudich’s Conjecture

Natural properties, introduced by Razborov and Rudich [9],

can be cast as algorithms breaking a particular hitting set

generator. The hitting set generator is defined as follows.

Definition V.3 (Circuit interpreter). Let s : N → N be a
function. Let

Gint,s := {Gint,s
� : {0, 1}O(s(�) log s(�)) → {0, 1}2�}�∈N

denote the family of circuit interpreters Gint,s
� with parameter

s, defined as follows: Gint,s
� takes as input a description zC ∈

{0, 1}O(s(�) log s(�)) of a circuit C of size at most s(�) on �
inputs, and outputs the truth table of the function computed
by C.

Definition V.4 (Γ-natural property). A promise problem
(LY, LN) is called a natural property useful against

SIZE(s(�)) with largeness γ if (LY, LN) γ-avoids the circuit
interpreter Gint,s with parameter s. If, in addition, (LY, LN) ∈
Promise-Γ for a complexity class Γ such as P, BPP or NP,
then (LY, LN) is called a Γ-natural property.

Rudich [42] conjectured that there is no NP/poly-natural

property useful against P/poly. In our terminology, his conjec-

ture implies that Gint,s is a hitting set generator secure against

NP/poly for any s(�) = �ω(1). Thus his conjecture implies

Gapσ,τMKTP �∈ coNP/poly for a wide range of parameters

σ.

Corollary V.5. Let s(n) = (log n)ω(1) for n ∈ N. Let
σ, τ : N × N → N be any functions such that σ(n, s(n) +
O(log n)) ≤ n − 2 for any n ∈ N. If Gapσ,τMKTP ∈
coNP/poly, then there is some NP/poly-natural property
useful against P/poly with largeness 1

2 .

B. Random 3SAT-Hardness

More significantly, we can also prove that

Gapσ,τMINKT ∈ coNP implies that Random 3SAT is

easy for a coNP algorithm. This is due to the fact that

Random 3SAT can be seen as another particular hitting set

generator G = {Gn : {0, 1}n−Ω(n/ logn) → {0, 1}n}n∈N.

We define a random 3SAT problem as a distribu-

tional NP problem. Let Δ be a sufficiently large constant

(> 1/ log(8/7) ≈ 5.19 ). For the number n of variables, let

m := Δn be the number of clauses. The distribution is defined
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as follows. For each i ∈ [m], choose a clause Ci randomly out

of the 8n3 possible clauses of 3CNFs (for each choice of 3

variables with replacement, we have 23 = 8 ways to negate the

variables). Output a 3CNF formula ϕ :=
∧m

i=1 Ci. Let D3SAT

denote the distribution defined in this way. Then, Random

3SAT is defined as the distributional problem (3SAT,D3SAT).

Theorem V.6. Let σ, τ : N × N → N be any functions such
that, for any constant c0 > 0, for some constant c1 > 0, for
all large N ∈ N, σ(N,N − c0N/ logN) ≤ N − c1N/ logN .
Then, Gapσ,τMINKT is Random 3SAT-hard. In particular,
if Gapσ,τMINKT ∈ coNP, then there exists an errorless
heuristic coNP algorithm solving Random 3SAT with failure
probability ≤ 2−Ω(n), where n denotes the number of vari-
ables.

VI. WORST-CASE TO AVERAGE-CASE REDUCTION FOR

MCSP

In this section, we establish a worst-case and average-case

equivalence for approximating a minimum circuit size. We

start by introducing the problem.

Definition VI.1 (GapMCSP). For any constant ε ∈ (0, 1], the
promise problem GapεMCSP is defined as follows: The input
consists of a function f : {0, 1}n → {0, 1} represented as its
truth table (of length 2n) and an integer s ∈ N. The task is
to distinguish the YES instances (f, s) such that size(f) ≤ s,
and the NO instances (f, s) such that size(f) > 2(1−ε)n · s.

When ε = 1, GapεMCSP corresponds to the Minimum Circuit

Size Problem (MCSP). There is a natural search version

associated to the promise problem.

Definition VI.2 (Search version of GapMCSP). The search
version of GapεMCSP is defined as follows: On input a
function f : {0, 1}n → {0, 1} represented as its truth table,
the task is to output a circuit C such that C computes f and
|C| ≤ 2(1−ε)n · size(f).

We consider the distributional NP problem of the following

problem under the uniform distribution.

Definition VI.3 (Parameterized Minimum Circuit Size Prob-

lem). For a function s : N → N, the Minimum Circuit Size

Problem with parameter s, abbreviated as MCSP[s], is the
following problem: Given a function f : {0, 1}n → {0, 1}
represented as its truth table, decide whether size(f) ≤ s(n).

Using the insight from [17], we show that an errorless

heuristic algorithm for MCSP[s] is essentially equivalent to

BPP-natural properties useful against SIZE(s(n)).

Lemma VI.4. Let s : N→ N be any function such that s(n) =
o(2n/n) for n ∈ N. Let γ, δ : N→ [0, 1] be functions.

1) If there exists a BPP-natural property useful against
SIZE(s(n)) with largeness γ, then (MCSP[s],U) ∈
AvgδBPP, where δ(2n) := 1− γ(n) for n ∈ N.

2) If (MCSP[s],U) ∈ AvgδBPP, then there exists a BPP-
natural property useful against SIZE(s(n)) with large-
ness γ where γ(n) = 1− δ(2n)− 2−2n−1

for n ∈ N.

In light of Lemma VI.4, the following is the core of

Theorem I.3, which can be proved by using a generic reduction

from approximately learning to natural properties [15].

Theorem VI.5. If there exists a BPP-natural property useful
against SIZE(2ε0n) with largeness δ0 for some constants
ε0, δ0 ∈ (0, 1), then there exists a randomized polynomial-
time algorithm solving the search version of Gapε1MCSP for
some ε1 > 0.

For functions f, g : {0, 1}n → {0, 1} and ε ∈ [0, 1], we say

that f is ε-close to g if dist(f, g) ≤ ε. We state the main result

of [15] in the following lemma.

Lemma VI.6 (Carmosino, Impagliazzo, Kabanets, and

Kolokolova [15]). For every � ≤ n ∈ N, ε > 0, there exists a
“black-box generator” G�,n,ε satisfying the following.

• G�,n,ε maps a function f : {0, 1}n → {0, 1} to a function
Gf

�,n,ε : {0, 1}m → {0, 1}2� for some m ∈ N, and
• size(Gf

�,n,ε(z)) ≤ poly(n, 1/ε, size(f)) for all z ∈
{0, 1}m, where we regard Gf

�,n,ε(z) as a function on �-bit
inputs.

Moreover, there exists a randomized polynomial-time oracle
machine (a “reconstruction algorithm”) satisfying the follow-
ing specification.

Inputs: Oracle access to a function f : {0, 1}n → {0, 1},
parameters n, ε−1, 2� ∈ N represented in unary, and a circuit
D on 2�-bit inputs.

Promise: We assume that D is a statistical test for Gf
�,n,ε with

advantage δ0 for some universal constant δ0 > 0.

Output: A circuit C that is ε-close to f . (In particular, the size
of C is at most poly(n, ε−1, 2�, |D|)).
Proof Sketch of Theorem VI.5. Suppose that the truth table of

f : {0, 1}n → {0, 1} is given as input. Let u(�) := 2ε0� denote

the usefulness parameter.

First, note that any circuit C that is ε-close to f can be

converted to a circuit C ′ computing f exactly so that |C ′| ≤
|C|+ε·2n ·n+O(1). Indeed, since there are at most ε2n inputs

on which f and C disagree, we can define a DNF formula ϕ
with ε2n terms such that ϕ outputs 1 iff f and C disagree; then

we may define C ′(x) := C(x)⊕ϕ(x) so that C ′(x) = f(x) for

every x ∈ {0, 1}n. Therefore, the output of the reconstruction

algorithm of Lemma VI.6 can be converted to a circuit C ′

computing f exactly so that |C ′| ≤ poly(n, 1/ε, 2�, |D|) + ε ·
2n · n.

Second, using Adleman’s trick [54] (for proving BPP ⊆
P/poly), we can transform a BPP-natural property to a circuit

D such that |D| ≤ poly(2�) and D is a statistical test for

Gf
�,n,ε if size(Gf

�,n,ε(z)) ≤ u(�) for every z; in particular, this

condition is satisfied if 2� ≥ poly(n, 1/ε, size(f)) for some

polynomial poly.

Combining these two observations, we obtain an efficient

algorithm that, given f and ε, outputs a circuit C ′ computing f
such that |C ′| ≤ poly(n, 1/ε, size(f))+ ε2nn. Thus by choos-
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ing ε appropriately, we obtain a circuit of size 2(1−ε1)n ·size(f)
for some constant ε1 > 0. �
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