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Abstract—The constraint satisfaction problem (CSP) is con-
cerned with homomorphisms between two structures. For CSPs
with restricted left-hand side structures, the results of Dal-
mau, Kolaitis, and Vardi [CP’02], Grohe [FOCS’03/JACM’07],
and Atserias, Bulatov, and Dalmau [ICALP’07] establish
the precise borderline of polynomial-time solvability (subject
to complexity-theoretic assumptions) and of solvability by
bounded-consistency algorithms (unconditionally) as bounded
treewidth modulo homomorphic equivalence.

The general-valued constraint satisfaction problem (VCSP)
is a generalisation of the CSP concerned with homomorphisms
between two valued structures. For VCSPs with restricted left-
hand side valued structures, we establish the precise borderline
of polynomial-time solvability (subject to complexity-theoretic
assumptions) and of solvability by the k-th level of the Sherali-
Adams LP hierarchy (unconditionally). We also obtain results
on related problems concerned with finding a solution and
recognising the tractable cases; the latter has an application in
database theory.

Keywords-valued constraint satisfaction; homomorphism
problems; fractional homomorphism; treewidth; Sherali-
Adams LP relaxation

I. INTRODUCTION

Constraint Satisfaction Problems: The homomorphism

problem for relational structures is a fundamental com-

puter science problem: Given two relational structures A
and B over the same signature, the goal is to determine

the existence of a homomorphism from A to B (see,

e.g., the book by Hell and Nešetřil on this topic [31]).

The homomorphism problem is known to be equivalent to

the evaluation problem and the containment problem for

conjunctive database queries [12], [33], and also to the

constraint satisfaction problem (CSP) [21], which originated

in artificial intelligence [39] and provides a common frame-

work for expressing a wide range of both theoretical and

real-life combinatorial problems.

For a class C of relational structures, we denote by CSP(C,

−) the restriction of the homomorphism problem in which

the input structure A belongs to C and the input structure

B is arbitrary (these types of restrictions are known as

structural restrictions). Similarly, by CSP(−, C) we denote

the restriction of the homomorphism problem in which the

input structure A is arbitrary and the input structure B
belongs to C.

Feder and Vardi initiated the study of CSP(−, {B}), also

known as non-uniform CSPs, and famously conjectured that,

for every fixed finite structure B, either CSP(−, {B}) is in

PTIME or CSP(−, {B}) is NP-complete. For example, if

B is a clique on k vertices then CSP(−, {B}) is the well-

known k-colouring problem, which is known to be in PTIME

for k ≤ 2 and NP-complete for k ≥ 3. Most of the progress

on the Feder-Vardi conjecture (e.g., [6], [3], [32], [10], [2])

is based on the algebraic approach [9], culminating in two

recent (affirmative) solutions to the Feder-Vardi conjecture

obtained independently by Bulatov [7] and Zhuk [47].

Note that CSP(C, −) is only interesting if C is an infinite

class of structures as otherwise CSP(C, −) is always in

PTIME. (This is, however, not the case for CSP(−, C) as we

have seen in the example of 3-colouring.) Freuder observed

that CSP(C, −) is in PTIME if C consists of trees [23]

or, more generally, if it has bounded treewidth [24]. Later,

Dalmau, Kolaitis, and Vardi showed that CSP(C, −) is

solved by k-consistency, a fundamental local propagation

algorithm [15], if C is of bounded treewidth modulo homo-
morphic equivalence, i.e., if the treewidth of the cores of the

structures from C is at most k, for some fixed k ≥ 1 [14].

Atserias, Bulatov, and Dalmau showed that this is precisely

the class of structures solved by k-consistency [1]. In [29],

Grohe proved that the tractability result of Dalmau et al. [14]

is optimal for classes C of bounded arity: Under the assump-

tion that FPT �= W[1], CSP(C, −) is tractable if and only if

C has bounded treewidth modulo homomorphic equivalence.

General-valued Constraint Satisfaction Problems:
General-valued Constraint Satisfaction Problems (VCSPs)

are generalisations of CSPs which allow for not only de-

cision problems but also for optimisation problems (and the

mix of the two) to be considered in one framework [13]. In

the case of VCSPs we deal with valued structures. Regarding

tractable restrictions, the situation of the non-uniform case is

by now well-understood. Indeed, assuming the (now proved)

Feder-Vardi conjecture, it holds that for any fixed valued

structure B, either VCSP(−, {B}) is in PTIME or VCSP(−,

{B}) is NP-complete [37], [35].

For structural restrictions, it is a folklore result that

VCSP(C, −) is tractable if C is of bounded treewidth; see,

e.g. [4]. So is the fact that the (k+1)-st level of the Sherali-

Adams LP hierarchy [43] solves VCSP(C, −) to optimality

if the treewidth of all structures in C is at most k. (We are

not aware of any reference for this fact. For certain special

problems, it is discussed in [5]. For the extension complexity

of such problems, see [34].) However, unlike the CSP case,

the precise borderline of polynomial-time solvability and the
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power of fundamental algorithms (as the Sherali-Adams LP

hierarchy) for VCSP(C, −) is still unknown. Understanding

these complexity and algorithmic frontiers for VCSP(C, −)

is the main goal of this paper.

Contribution: We study the problem VCSP(C, −) for

classes C of valued structures. As our first result, we give

(in Theorem IV.1) a complete complexity classification of

VCSP(C, −) and identify the precise borderline of tractabil-

ity, for classes C of bounded arity. A key ingredient in

our result is a novel notion of valued equivalence and a

characterisation of this notion in terms of valued cores.

More precisely, we show that VCSP(C, −) is tractable

if and only if C has bounded treewidth modulo valued

equivalence. This latter notion strictly generalises bounded

treewidth and it is strictly weaker than bounded treewidth

modulo homomorphic equivalence. Our proof builds on the

characterisation by Dalmau et al. [14] and Grohe [29] for

CSPs (see Section IV).

We show that the newly identified tractable classes are

solvable by the Sherali-Adams LP hierarchy. Our second

result (Theorem V.1) gives a precise characterisation of the

power of Sherali-Adams for VCSP(C, −). In particular, we

show that the (k + 1)-st level of the Sherali-Adams LP

hierarchy solves VCSP(C, −) to optimality if and only if

the valued cores of the structures from C have treewidth

modulo scopes at most k and the overlaps of scopes are of

size at most k+1. The proof builds on the work of Atserias

et al. [1] and Thapper and Živný [46], as well as on an

adaptation of the classical result connecting treewidth and

brambles by Seymour and Thomas [42].

Our main results are for the VCSP in which we ask for

the cost of an optimal solution. It is also possible to define

the VCSP as a search problem, in which one is additionally

required to return a solution with the optimal cost. A

complete characterisation of tractable search cases in terms

of structural properties of (a class of structures) C is open

even for CSPs and there is some evidence that the tractability

frontier cannot be captured in simple terms [8, Lemma 1].

Building on our main results as well as on techniques

from [45], we give in Section VI a characterisation of the

tractable cases for search VCSP(C , −) in terms of tractable

core computation (Theorem VI.1). Finally, we provide in

Section VII tight complexity bounds for several problems

related to our classification results, e.g., deciding whether

the treewidth is at most k modulo valued equivalence,

deciding solvability by the k-th level of the Sherali-Adams

LP hierarchy, and deciding valued equivalence for valued

structures. These results have interesting consequences to

database theory, specifically, to the evaluation and opti-

misation of conjunctive queries over annotated databases.

In particular, we show that the containment problem of

conjunctive queries over the tropical semiring is in NP, thus

improving on the work of [36], which put it in Πp
2.

Related work: In his PhD thesis [19], Färnqvist studied

the complexity of VCSP(C, −) and also some fragments of

VCSPs (see also [20], [18]). He considered a very specific

framework that only allows for particular types of classes

C’s to be classified. For these classes, he showed that

only bounded treewidth gives rise to tractability (assuming

bounded arity) and asked about more general classes. In

particular, decision CSPs do not fit in his framework and

Grohe’s classification [29] is not implied by Färnqvist’s

work. In contrast, our characterisation (of all classes C’s

of valued structures) gives rise to new tractable cases going

beyond those identified by Färnqvist. Moreover, we can de-

rive both Grohe’s classification and Färnqvist’s classification

directly from our results, as explained in Section IV.

It is known that Grohe’s characterisation applies only to

classes C of bounded arity, i.e., when the arities of the

signatures are always bounded by a constant (for instance,

CSPs over digraphs) and fails for classes of unbounded arity.

In this direction, several hypergraph-based restrictions that

lead to tractability have been proposed (for a survey see,

e.g. [25]). Nevertheless, the precise tractability frontier for

CSP(C, −) is not known. The situation is different for fixed-
parameter tractability: Marx gave a complete classification

of the fixed-parameter tractable restrictions CSP(C, −), for

classes C of structures of unbounded arity [38]. In the case

of VCSPs, Gottlob et al. [26] and Färnqvist [18] applied

well-known hypergraph-based tractable restrictions of CSPs

to VCSPs.

II. PRELIMINARIES

We assume familiarity with relational structures and ho-

momorphisms. Briefly, a relational signature is a finite set

τ of relation symbols R, each with a specified arity ar(R).
A relational structure A over a relational signature τ (or

a relational τ -structure, for short) is a finite universe A
together with one relation RA ⊆ Aar(R) for each symbol

R ∈ τ . A homomorphism from a relational τ -structure A
(with universe A) to a relational τ -structure B (with universe

B) is a mapping h : A �→ B such that for all R ∈ τ and

all tuples x ∈ RA we have h(x) ∈ RB. We refer the reader

to [31] for more details.

We use Q≥0 to denote the set of nonnegative rational

numbers with positive infinity, i.e. Q≥0 = Q≥0 ∪ {∞}. As

usual, we assume that ∞+c = c+∞ =∞ for all c ∈ Q≥0,

∞× 0 = 0 ×∞ = 0, and ∞× c = c ×∞ = ∞, for all

c > 0.

Valued structures: A signature is a finite set σ of

function symbols f , each with a specified arity ar(f). A

valued structure A over a signature σ (or a valued σ-

structure, for short) is a finite universe A together with one

function fA : Aar(f) �→ Q≥0 for each symbol f ∈ σ. We

define tup(A) to be the set of all pairs (f,x) such that

f ∈ σ and x ∈ Aar(f). If A,B, . . . are valued structures,

then A,B, . . . denote their respective universes.
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VCSPs: We define Valued Constraint Satisfaction
Problems (VCSPs) as in [44]. An instance of the VCSP

is given by two valued structures A and B over the same

signature σ. For a mapping h : A �→ B, we define

cost(h) =
∑

(f,x)∈tup(A)

fA(x)fB(h(x)).

The goal is to find the minimum cost, denoted by opt(A,B),
over all possible mappings h : A �→ B.

For a class C of valued structures (not necessarily over the

same signature), we denote by VCSP(C, −) the restriction of

the VCSP to instances (A,B) such that A ∈ C. We say that

VCSP(C, −) is in PTIME, the class of problems solvable

in polynomial time, if there is a deterministic algorithm

that solves any instance (A,B) of VCSP(C, −) in time

(|A|+ |B|)O(1). We also consider the parameterised version

of VCSP(C, −), denoted by p-VCSP(C, −), where the

parameter is |A|. We say that p-VCSP(C, −) is in FPT,

the class of problems that are fixed-parameter tractable, if

there is a deterministic algorithm that solves any instance

(A,B) of p-VCSP(C, −) in time f(|A|) · |B|O(1), where

f : N �→ N is an arbitrary computable function. The

class W[1], introduced in [17], can be seen as an analogue

of NP in parameterised complexity theory. Proving W[1]-

hardness of p-VCSP(C, −) (under an fpt-reduction) is a

strong indication that p-VCSP(C, −) is not in FPT as it

is believed that FPT �= W[1]. We refer the reader to [22] for

more details on parameterised complexity.

Treewidth of a valued structure: The notion of

treewidth (originally introduced by Bertelé and Brioschi [4]

and later rediscovered by Robertson and Seymour [40]) is a

well-known measure of the tree-likeness of a graph [16]. Let

G = (V (G), E(G)) be a graph. A tree decomposition of G
is a pair (T, β) where T = (V (T ), E(T )) is a tree and β is a

function that maps each node t ∈ V (T ) to a subset of V (G)
such that (i) V (G) =

⋃
t∈V (T ) β(t), (ii) for every u ∈ V (G),

the set {t ∈ V (T ) | u ∈ β(t)} induces a connected subgraph

of T , and (iii) for every edge {u, v} ∈ E(G), there is

a node t ∈ V (T ) with {u, v} ⊆ β(t). The width of the

decomposition (T, β) is max{|β(t)| | t ∈ V (T )} − 1. The

treewidth tw(G) of a graph G is the minimum width over

all its tree decompositions.

Let A be a relational structure over a relational signature

τ . Its Gaifman graph (also known as primal graph), denoted

by G(A), is the graph whose vertex set is the universe of

A and whose edges are the pairs {u, v} for which there

is a tuple x and a relation symbol R ∈ τ such that u, v
appear in x and x ∈ RA. We define the treewidth of A to

be tw(A) = tw(G(A)).
Let A be a valued σ-structure. We define the set of

the positive tuples of A to be tup(A)>0 = {(f,x) ∈
tup(A) | fA(x) > 0}. Note that if A is the left-hand

side of an instance of the VCSP, the only tuples relevant

to the problem are those in tup(A)>0. Hence, in order to

define structural restrictions and in particular, the notion of

treewidth, we focus on the structure induced by tup(A)>0.

Formally, we associate with the signature σ a relational

signature rel(σ) that contains, for every f ∈ σ, a relation

symbol Rf of the same arity as f . We define Pos(A) to be

the relational structure over rel(σ) with the same universe A

of A such that x ∈ R
Pos(A)
f if and only if (f,x) ∈ tup(A)>0.

We let the treewidth of A be tw(A) = tw(Pos(A)).

Remark. Observe that, in the VCSP, we allow infinite

costs not only in B but also in the left-hand side structure

A. This allows us to consider the VCSP as the minimum-

cost mapping problem between two mathematical objects

of the same nature. Intuitively, mapping the tuples of A to

infinity ensures that those are logically equivalent to hard
constraints, as any minimum-cost solution must map them to

tuples of cost exactly 0 in B. Thus, decision CSPs, which are

{0,∞}-valued VCSPs, are a special case of our definition

and all our results also apply to CSPs.

III. EQUIVALENCE FOR VALUED STRUCTURES

We start by introducing the notion of valued equivalence

that is crucial for our results.

Definition 1. Let A,B be valued σ-structures. We say that
A improves B, denoted by A � B, if opt(A,C) ≤ opt(B,C)
for all valued σ-structures C.

When two valued structures improve each other, we call

them equivalent. (In Section I, we used the term “valued

equivalence”. From now on, we drop the word “valued”

unless needed for clarity.)

Definition 2. Let A,B be valued σ-structures. We say that
A and B are equivalent, denoted by A ≡ B, if A � B and
B � A.

Hence, two valued σ-structures A and B are equivalent

if they have the same optimal cost over all right-hand side

valued structures. While equivalence implies homomorphic
equivalence of Pos(A) and Pos(B), the converse does not

hold in general [11] (cf. Example 2).

We now give a characterisation of equivalence in terms

of certain types of homomorphisms. A homomorphism

between two relational structures is a structure-preserving

mapping. A fractional homomorphism between two valued

structures played an important role in [44]. Intuitively, it is a

probability distribution over mappings between the universes

of the two structures with the property that the expected cost

is not increased [44]. In this paper, we will need a different

but related notion of inverse fractional homomorphism. For

sets A and B, we denote by BA the set of all mappings

from A to B.

Definition 3. Let A,B be valued σ-structures. An inverse

fractional homomorphism from A to B is a function ω :
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BA �→ Q≥0 with
∑

g∈BA ω(g) = 1 such that for each
(f,x) ∈ tup(B) we have

∑

g∈BA

ω(g)fA(g−1(x)) ≤ fB(x)

where fA(g−1(x)) :=
∑

y∈Aar(f):g(y)=x f
A(y). We define

the support of ω to be the set supp(ω) := {g ∈ BA | ω(g) >
0}.

Observe that an inverse fractional homomorphism ω from

A to B is actually a distribution over the set of homomor-

phisms from Pos(A) to Pos(B), i.e., every g ∈ supp(ω) is

a homomorphism from Pos(A) to Pos(B). The following

result relates improvement and inverse fractional homomor-

phisms.

Proposition III.1. Let A,B be valued σ-structures. Then,
A � B if and only if there exists an inverse fractional
homomorphism from A to B.

Proof sketch: From right to left, take an arbitrary

valued σ-structure C and a minimum-cost mapping h from

B to C. The idea is to compose the inverse fractional

homomorphism ω from A to B with the mapping h to obtain

a distribution over mappings from A to C whose cost in

expectation is less than cost(h) = opt(B,C). This implies

that opt(A,C) ≤ opt(B,C). For the other direction, we can

write a linear system capturing the existence of an inverse

fractional homomorphism from A to B. If there is no such

fractional homomorphism, by Farkas’ Lemma, we obtain a

vector w of weights (one weight for each element in tup(B))
with certain properties. From B and w, we can define a

counterexample to the fact that A � B.

Appropriate notions of cores have played an important

role in the complexity classifications of left-hand side re-

stricted CSPs [29], right-hand side restricted CSPs [9], [7],

[47], and right-hand side restricted VCSPs [45], [35]. We

define cores around inverse fractional homomorphisms. We

say that a valued structure A is a core if every inverse

fractional homomorphism ω from A to A is surjective, i.e.,

every g ∈ supp(ω) is surjective. A valued structure A′ is

a core of A if A′ is a core itself and A′ ≡ A. In the full

version [11], we show that

(i) every valued structure A has a core,

(ii) all cores of A are isomorphic (in the sense of [11,

Definition 8]),

(iii) the core of A is a structure with minimum number of

elements among those equivalent to A,

(iv) the core of A is a structure with minimum treewidth

among those equivalent to A, and

(v) the core of A can be computed effectively.

IV. COMPLEXITY OF VCSP(C , −)

Let C be a class of valued structures. We say that C has

bounded arity if there is a constant r ≥ 1 such that for

every valued σ-structure A ∈ C and f ∈ σ, we have that

ar(f) ≤ r. Similarly, we say that C has bounded treewidth

modulo equivalence if there is a constant k ≥ 1 such that

every A ∈ C is equivalent to a valued structure A′ with

tw(A′) ≤ k. The following is our first main result.

Theorem IV.1 (Complexity classification). Assume FPT
�= W[1]. Let C be a recursively enumerable class of valued
structures of bounded arity. Then, the following are equiva-
lent:

1) VCSP(C, −) is in PTIME.
2) p-VCSP(C, −) is in FPT.
3) C has bounded treewidth modulo equivalence.

Although Grohe’s result [29] for CSPs looks almost

identical to Theorem IV.1, we emphasise that his result

involves a different type of equivalence. In Grohe’s case,

the equivalence in question is homomorphic equivalence
whereas in our case the equivalence in question involves im-
provement. As we will explain later in this section, Grohe’s

classification follows as a special case of Theorem IV.1.

Note that by property (iv) of cores discussed at the end of

Section III, a class C has bounded treewidth modulo equiva-

lence if and only if the class given by the cores of the valued

structures in C has bounded treewidth. This notion strictly

generalises bounded treewidth, as illustrated in Example 1.

Consequently, Theorem IV.1 gives new tractable cases.

Example 1. Consider the signature σ = {f, μ}, where

f and μ are binary and unary function symbols, respec-

tively. For n ≥ 1, let An be the valued σ-structure

with universe An = {1, . . . , n} × {1, . . . , n} such that

(i) fAn((i, j), (i′, j′)) = ∞ if i ≤ i′, j ≤ j′, and

(i′ − i) + (j′ − j) = 1; otherwise fAn((i, j), (i′, j′)) = 0,

and (ii) μAn((i, j)) = 1, for all (i, j) ∈ An. Also, for

n ≥ 1, let A′n be the valued σ-structure with universe

A′n = {1, . . . , 2n − 1} such that (i) fA
′
n(i, j) = ∞ if

j = i + 1; otherwise fA
′
n(i, j) = 0, and (ii) μA

′
n(i) = i,

for 1 ≤ i ≤ n, and μA
′
n(i) = 2n− i, for n+1 ≤ i ≤ 2n−1.

The structures A and A′ from Figure 1 correspond to A3

and A′3, respectively; informally An is a directed grid of

size n × n with a unary function μ with weight 1 applied

to each element. We argue in [11] that for each n ≥ 1 the

valued structure A′n is the core of An. Since tw(A′n) = 1,

the class C := {An | n ≥ 1} has bounded treewidth modulo

equivalence. However, C has unbounded treewidth as the

Gaifman graphs in {G(Pos(An)) | n ≥ 1} correspond to the

class of (undirected) grids, which is a well-known family of

graphs with unbounded treewidth (see, e.g. [16]).

It is worth noticing that bounded treewidth modulo equiv-

alence implies bounded treewidth modulo homomorphic

equivalence (of the positive parts), but the converse is not

true in general, as the next example shows. Therefore, The-

orem IV.1 tells us that the tractability frontier for VCSP(C,
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−) lies strictly between bounded treewidth and bounded

treewidth modulo homomorphic equivalence.

Example 2. For n ≥ 3, let An be the valued σ-structure

from Example 1. Let Cn be the valued σ-structure with the

same universe as An, i.e., Cn = {1, . . . , n} × {1, . . . , n},
such that fCn = fAn and μCn is defined as follows. Let

D1, . . . , Dn be the n first diagonals of Cn starting from the

bottom left corner (1, 1) (see Figure 1 for an illustration

of C4). For 1 ≤ i ≤ n, let Ei be the top-left to bottom-

right enumeration of Di. In particular, E1 = ((1, 1)),
E2 = ((2, 1), (1, 2)), E3 = ((3, 1), (2, 2), (1, 3)) and En =
((n, 1), (n− 1, 2), . . . , (1, n)). Fix an integer M = M(n)
such that M > n2. The values assigned by μCn to E1, E2

and E3 are (1), (M, 1) and
(
M3,M2,M4

)
, respectively,

and for Ei, with 4 ≤ i ≤ n, is (M, 1, . . . , 1,M). All re-

maining elements in Cn\
⋃

1≤i≤n Di receive cost 1. Figure 1

depicts the case of C4. Let C := {Cn | n ≥ 3}. Note first

that Pos(Cn) is homomorphically equivalent to the relational

structure P2n−1 over relational signature rel(σ) = {Rf , Rμ}
(recall the definition of rel(σ) from Section II), whose

universe is P2n−1 = {1, . . . , 2n− 1}, RP2n−1
μ = P2n−1 and

R
P2n−1

f = {(i, i+1) | 1 ≤ i ≤ 2n−2}. Since tw(P2n−1) =
1, for all n ≥ 3, it follows that {Pos(Cn) | n ≥ 3} has

bounded treewidth modulo homomorphic equivalence. We

show in [11] that Cn is a core, for all n ≥ 3, and thus C
has unbounded treewidth modulo (valued) equivalence.

Corollaries of the complexity classification: We can

obtain the classification for CSPs of Dalmau et al. [14] and

Grohe [29] as a special case of Theorem IV.1. Indeed, we

can encode left-hand side relational structures as {0,∞}-
valued structures in the following way: a tuple has value

∞ if it belongs to the corresponding relation, otherwise its

value is 0. Also, for a class C of {0,∞}-valued structures,

the problem VCSP(C,−) boils down to CSP(C,−), and

the notion of bounded treewidth modulo (valued) equiva-

lence collapses to bounded treewidth modulo homomorphic

equivalence. Hence, by applying Theorem IV.1 to {0,∞}-
valued structures, we recover the known CSP classification

from [14], [29].
In his PhD thesis [19], Färnqvist also considered the com-

plexity of VCSP(C, −). However, he considered a different

definition of the problem, that we denote by VCSPF (C,

−). In his framework, VCSPs are parameterised by a class

of relational structures C, instead of valued structures. In

particular, VCSPF (C, −) coincides with VCSP(CF , −),

where each valued structure A ∈ CF is obtained from a

relational structure A ∈ C by ignoring the signature of

A and adding one fresh function symbol fR,x for each

tuple x ∈ RA such that fA

R,x(x) = 1 and fA

R,x(y) = 0,

for all y �= x. (For more details on this framework, see

[11, Section 4].) It was shown in [19] that for a class

C of relational structures of bounded arity, VCSPF (C, −)

is tractable if and only if C has bounded treewidth. This

result follows directly from Theorem IV.1 as every valued

structure in a class of the form CF is a (valued) core, and

hence, bounded treewidth modulo equivalence boils down to

bounded treewidth. Notice that our definition of VCSP(C ,

−) is parameterised directly by a class of valued structures

C. This allows for a more fine-grained analysis of structural

restrictions and, in particular, provides new tractable classes

beyond bounded treewidth (cf. Example 1).

Finally, let us note that since Theorem IV.1 applies to

all valued structures, the tractability part applies directly to

the finite-valued VCSP, where all functions are restricted

to take finite values in Q≥0. In fact, also the hardness part

of Theorem IV.1 holds for the finite-valued VCSP [11].

Moreover, we give in [11] examples that demonstrate that

already for finite-valued structures the tractability frontier is

strictly between bounded treewidth and bounded treewidth

modulo homomorphic equivalence.

Proof sketch of Theorem IV.1: The implication (1) ⇒
(2) is immediate. The tractability part, i.e., implication

(3) ⇒ (1) will be established in Section V. In particular,

it will follow from Theorem V.1 that, if there is a constant

k ≥ 1 such that every valued structure in the class C is

equivalent to a valued structure of treewidth at most k, then

VCSP(C, −) can be solved in polynomial time using the

(k + 1)-th level of the Sherali-Adams LP hierarchy.

Let us first mention that the remaining hardness part (im-

plication (2) ⇒ (3)) does not follow directly from Grohe’s

result for CSPs [29]. The natural approach is to define, for a

class of valued structures C, the class of relational structures

Pos(C) = {Pos(A) | A ∈ C}. Then one can observe that p-

CSP(Pos(C), −) fpt-reduces to p-VCSP(C, −), and hence

W[1]-hardness of the former problem implies hardness for

the latter. However, if C has unbounded treewidth modulo

equivalence, the class Pos(C) does not necessarily have

unbounded treewidth modulo homomorphic equivalence (see

Example 2), and hence Pos(C) is not necessarily hard

according to Grohe’s classification.

We instead refine Grohe’s hardness proof [29] and reduce

p-CLIQUE to p-VCSP(C, −), where C has unbounded

treewidth modulo (valued) equivalence. Given an instance

(G, k) of p-CLIQUE, the first step is to enumerate C until

we find a valued structure A′ ∈ C with a (valued) core

A such that the Gaifman graph G(A) of A contains the

(k × K)-grid as a minor (K =
(
k
2

)
). Note that such an A

exists due to the Excluded Grid Theorem [41] of Robertson

and Seymour. Then we construct a valued structure B and

a threshold M∗ ≥ 0 such that G contains a k-clique if and

only if opt(A,B) ≤M∗ (or equivalently, opt(A′,B) ≤M∗),
which completes the reduction. To define B, we exploit a

construction of [29] that, given an instance (G, k) of p-

CLIQUE and a relational core A whose Gaifman graph

contains the (k ×K)-grid as a minor, produces a relational

structure B such that G contains a k-clique if and only if

there is a homomorphism from A to B. (Intuitively, the

240



1

11

1

1 1

1

1

1

M 1 1

M

M

M4

M2

M3

(1, 1)

1 12 3 2

(1, 1)

1 1

1

11

11

1

Figure 1. The valued σ-structures A3, A′
3 and C4 from left to right (M > 16).

(k ×K)-grid minor of A encodes the incidence matrix of

a k-clique.) Note that this construction cannot be applied

directly with A = Pos(A) as being a (valued) core does

not imply that the positive part is a relational core (see

Example 2), and hence, Pos(A) is not necessarily a relational

core. Instead, we observe that it is possible to construct the

above-described B, together with a homomorphism π from

B to Pos(A), such that G contains a k-clique if and only

if there is a homomorphism h from Pos(A) to B such that

π ◦ h is surjective [11, Lemma 25]. Finally, we exploit the

following characterisation of cores [11, Proposition 15].

Proposition IV.2. Let A be a valued σ-structure. Then,
A is a core if and only if there exists a mapping c :
tup(A) �→ Q≥0 such that for every non-surjective mapping
g : A �→ A, we have MA,c :=

∑
(f,x)∈tup(A) f

A(x)c(f,x) <∑
(f,x)∈tup(A) f

A(x)c(f, g(x)) =: costA,c(g).

Proposition IV.2 allows us to define our required threshold

M∗ := MA,c and the valued structure B by assigning

values to the tuples of B according to c (via π), and large

values to the remaining tuples. The key property of B is

that for every assignment h : A �→ B, either h is not a

homomorphism from Pos(A) to B, and then cost(h) is large

(in particular, larger than M∗), or h is a homomorphism and

cost(h) = costA,c(π ◦ h). Using this, it can be shown that

there is a homomorphism h from Pos(A) to B such that

π ◦ h is surjective if and only if opt(A,B) ≤M∗.

V. POWER OF SHERALI-ADAMS FOR VCSP(C , −)

Given a tuple x, we write Set(x) to denote the set of

elements appearing in x. Let (A,B) be an instance of the

VCSP over a signature σ and k ≥ 1. We define a new

signature σk = σ∪{ρk}, where ρk is a new function symbol

of arity k. Then, we create from (A,B) an instance (Ak,Bk)
over σk such that Ak = A, Bk = B, ρAk

k (x) = 1 for any

x ∈ Ak
k, ρBk

k (x) = 0 for any x ∈ Bk
k , and for every f ∈ σ

we have fAk = fA and fBk = fB. Because the new function

ρk is identically zero in Bk, we have that for any mapping

h : A �→ B, cost(h) is the same in both instances (A,B) and

(Ak,Bk). The Sherali-Adams relaxation of level k [43] of

(A,B), denoted by SAk(A,B), is the linear program given in

Figure 2, which has one variable λ(f,x, s) for each (f,x) ∈
tup(Ak)>0 and s : Set(x) �→ Bk. Note that the variables are

indexed not only by x and s but also by f . This would not

be necessary if k ≥ ar(f) but we are also interested in the

case of k < ar(f).

Definition 4. Let A,B be valued σ-structures and k ≥ 1.
We denote by optk(A,B) the minimum cost of a solution to
SAk(A,B).

Let A be a relational structure with universe A over a

relational signature τ . Recall from Section II that G(A)
denotes the Gaifman graph of A. A scope of G(A) is a

set X for which there is a relation symbol R ∈ τ and a

tuple x ∈ RA such that X = Set(x). In other words, the

scopes of G(A) are the sets that appear precisely in the

tuples of A.1 Observe that every scope X of G(A) induces

a clique in G(A).

Definition 5. Let A be a relational structure and G(A)
its Gaifman graph. Let (T, β) be a tree decomposition of
G(A), where T = (V (T ), E(T )). The width modulo scopes

of (T, β) is defined as

max{|β(t)| − 1 | t ∈ V (T )

and β(t) is not a scope of G(A)}.
If β(t) is a scope for all nodes t ∈ V (T ) then we set the
width modulo scopes of (T, β) to be 0. The treewidth modulo

scopes of G(A), denoted by twms(G(A)), is the minimum
width modulo scopes over all its tree decompositions. The
treewidth modulo scopes of A is twms(A) = twms(G(A)).
For a valued structure A, we define the treewidth modulo
scopes of A as twms(A) = twms(Pos(A)).

Note that, unlike treewidth, the notion of treewidth mod-

ulo scopes is not monotone, i.e., it can increase after taking

substructures. To see this, take for instance the relational

structure A that corresponds to the undirected k × k grid.

We have twms(A) = k. However, adding a new relation

with only one tuple containing all elements of A lowers

1In a (V)CSP instance, the term scope usually refers to the list of
variables a (valued) constraint depends on.
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min
∑

(f,x)∈tup(Ak)>0, s:Set(x) �→Bk

fAk (x)×fBk (s(x))<∞

λ(f,x, s)fAk(x)fBk(s(x))

λ(f,x, s) =
∑

r:Set(y) �→Bk,r|Set(x)=s

λ(p,y, r) ∀(f,x), (p,y) ∈ tup(Ak)>0 :
Set(x) ⊆ Set(y) and |Set(x)| ≤ k;

∀s : Set(x) �→ Bk

∑

s:Set(x)�→Bk

λ(f,x, s) = 1 ∀(f,x) ∈ tup(Ak)>0

λ(f,x, s) = 0 ∀(f,x) ∈ tup(Ak)>0, s : Set(x) �→ Bk : fAk(x)× fBk(s(x)) =∞
λ(f,x, s) ≥ 0 ∀(f,x) ∈ tup(Ak)>0, s : Set(x) �→ Bk

Figure 2. The Sherali-Adams relaxation of level k of (A,B).

the treewidth modulo scopes to 0. Let us also remark

that the relational structures with treewidth modulo scopes

0 are precisely the relational structures whose underlying

hypergraphs are α-acyclic (see e.g. [25]).

Given a valued σ-structure A, the overlap of A is the

largest integer m such that there exist (f,x), (p,y) ∈
tup(A)>0 with (f,x) �= (p,y) and |Set(x) ∩ Set(y)| = m.

The following is our second main result.

Theorem V.1 (Power of Sherali-Adams). Let A be a valued
σ-structure and let k ≥ 1. Let A′ be the core of A. Then,
optk(A,B) = opt(A,B) for every valued σ-structure B if

and only if (i) twms(A
′) ≤ k− 1 and (ii) the overlap of A′

is at most k.

We show in [11] that Theorem V.1 holds also for finite-

valued structures. In particular, the sufficiency part of Theo-

rem V.1, i.e., if the core satisfies conditions (i) and (ii) then

the k-th level of Sherali-Adams is tight, applies directly to

the finite-valued case. It follows from the proofs of [11,

Theorems 36 and Theorem 39] that whenever the core

violates condition (i) or (ii) then the k-th level of Sherali-

Adams is not tight even for finite-valued structures. Hence,

Theorem V.1 also characterises the tightness of Sherali-

Adams for finite-valued VCSPs.

Let us note that the characterisation given by Theorem V.1

for levels k ≥ r, where r is the arity of the signature of A,

boils down to the notion of treewidth. That is, if k ≥ r,

the k-th level of Sherali-Adams is tight if and only if the

treewidth of the core of A is at most k − 1. Interestingly,

Theorem V.1 tells us precisely under which conditions the

k-th level works even for k < r.

Finally, we remark that the core structure A′ is in general

hard to compute [11], which rules out the naive algorithm

that would compute opt(A,B) using dynamic programming

along a tree decomposition of Pos(A′). Theorem V.1 gives

a way to circumvent this issue since the linear program

SAk(A,B) does not depend on A′ in any way.

Proof sketch of Theorem V.1: Suppose that A′ is

the core of A and that A′ satisfies conditions (i) and

(ii). Let (T, β) be a tree decomposition of G(Pos(A′)) of

width modulo scopes at most k − 1. Let λ be an optimal

solution to optk(A
′,B), for some arbitrary B, and c be

the vector defining the objective function of SAk(A
′,B).

To show that opt(A′,B) ≤ optk(A
′,B), we consider the

restriction of SAk(A
′,B) relevant to the tree decomposition

(T, β). Formally, let BTup := {(f,x) ∈ tup(A′k)>0 |
Set(x) ⊆ β(t) for some t in T} and T := {(f,x, s) :
(f,x) ∈ BTup, s : Set(x) �→ B}. Note that tup(A′)>0 ⊆
BTup, and hence c|T · λ|T = c · λ = optk(A

′,B).

We show that the polytope described by the restriction of

SAk(A
′,B) to T is integral (see [11, Lemma 34] for details).

Note that a feasible solution of this polytope corresponds

roughly to a family of consistent probability distributions

R = {R(X) | X is a bag of (T, β)}, where each R(X) is

a distribution over partial mappings from A′ to B with the

same domain X ⊆ A′. Under this view, proving integrality

(i.e., each feasible solution is a convex combination of

integral solutions), corresponds to exhibiting a probability

distribution R∗ over (global) mappings from A′ to B such

that for every bag X of the tree decomposition (T, β),
the marginal distribution of R∗ over X coincides with

R(X). Since the overlap of A′ is at most k, we have that

|X ∩X ′| ≤ k for every adjacent bags X and X ′ in (T, β).
Together with the consistency constraints in SAk(A

′,B),
this implies that the distributions R(X) and R(X ′) must be

consistent (i.e., define the same marginal over X∩X ′). This

allows us to argue inductively over the tree structure of T
and construct the required distribution R∗. This shows that

opt(A′,B) ≤ optk(A
′,B) and hence SAk(A

′,B) is always

tight. It follows that A is also tight as the optimum of any

level of Sherali-Adams is preserved under equivalence [11,

Proposition 28].
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Next, we need to show that conditions (i) and (ii) are not

only sufficient but also necessary for the tightness of the

Sherali-Adams relaxation of level k. More precisely, given

a valued structure A that fails to meet both conditions, we

need to construct a valued structure B such that opt(A,B) >
optk(A,B). By [11, Proposition 28] we can further assume

that A is a core.

In the case where A does not satisfy (i) we refine a

proof strategy from [1], where it is shown that for every

relational core A with treewidth at least k, there exists a

relational structure B such that the (k− 1)-consistency test

on (A,B) succeeds despite there being no homomorphism

from A to B. In order to prove this, it is shown that for every

relational structure A, there exists a relational structure B
and a homomorphism π from B to A, such that (†) there

is no homomorphism h from A to B such that π ◦ h is

surjective [1, Lemma 1]. Hence, if A is a relational core,

there is no homomorphism from A to B. On the other

hand, if tw(A) ≥ k then the (k − 1)-consistency test on

(A,B) succeeds [1, Lemma 2], or equivalently, there is a

non-empty family Hk of partial homomorphisms from A
to B whose domains are of size at most k such that the

following consistency property holds: for every two subsets

S, S′ ⊆ A and h ∈ Hk with domain S, there is h′ ∈ Hk

with domain S′ such that h|S∩S′ = h′|S∩S′ . To define

such a family, the authors exploit the well-known connection

between treewidth and brambles on graphs [42].

We define our valued structure B as a valued variant of

the relational structure B that would be constructed from

A = Pos(A), where the valuation of the tuples in B is given

by the mapping c (via π) in our cost-based characterisation

of cores (Proposition IV.2) and every other tuple is given

a large value. The latter ensures that every mapping h :
A �→ B that is not a homomorphism from Pos(A) to B has

very large cost. On the other hand, every homomorphism h
satisfies cost(h) = costA,c(π ◦ h). Property (†) above and

Proposition IV.2 ensure that opt(A,B) > MA,c.

The delicate part of the proof is to argue that there exists

a solution λ to SAk(A,B) of cost MA,c. Let D := {X ⊆
A | X is a scope of G(Pos(A)) or |X| ≤ k}. The solution

λ consists of a family of consistent probability distributions,

each one defined over a set of partial mappings over the

same domain X , where X ranges over D. In order to define

this family, we adapt an argument from [46] for proving the

existence of gap instances for Sherali-Adams relaxations of

VCSP(−, EG,3), where EG,3 denotes linear equations of

width three. The idea is to define a well-behaved set of

domains S ⊆ 2A that covers D in the sense that for every

X ∈ D, there is a minimal set SX ∈ S containing X . The

set S is well-behaved in that one can define for S ∈ S
a set of partial mappings H(S) with domain S, such that

the family of uniform distributions {U(H(S)) | S ∈ S} is

consistent. This allows us to define our required family of

consistent distributions over D via marginalisation: For each

X ∈ D, we consider the marginal distribution of U(H(SX)).
The construction of {H(S) | S ∈ S} is based on the

family Hk from [1]. In our case, we exploit the fact that

twms(A) ≥ k and a characterisation of treewidth modulo

scopes in terms of brambles [11, Theorem 32]. Finally, to

show that the uniform distributions {U(H(S)) | S ∈ S} are

actually consistent, we refine the analysis of Hk from [1].

In particular, it is not sufficient to argue that each partial

mapping over domain S can be extended to one with

domain S′ but we need to reason about the number of such

extensions [11, Claim 7].

If A violates condition (ii) instead, we construct a rela-

tional structure B over a domain B as follows. The elements

of B are tuples of the form (a, b1, . . . , bn), where a ∈ A and

(b1, . . . , bn) is a list of bits. Then, we pick two distinct tuples

(p,x), (q,y) with a large overlap S := Set(x)∩ Set(y) and

define the relations of B with two properties in mind: For

any homomorphism h : Pos(A) �→ B, the composition of

h with the first projection is a homomorphism from Pos(A)
to Pos(A), and there is no homomorphism h : Pos(A) �→ B
such that |h(S)| = |S|. The latter is achieved by exploiting

RB
p and RB

q to enforce conflicting parity constraints on cer-

tain bits bi in any injective assignment to S. Similarly to the

case where condition (i) is violated, we then use these two

properties together with the costs given by Proposition IV.2

to turn B into a valued structure B such that opt(A,B)
is strictly greater than some fixed threshold MA,c. Finally,

we exploit the fact that RB
p and RB

q only impose parity

constraints on assignments to |S| ≥ k+1 elements to show

that SAk(A,B) has a solution of cost MA,c given by uniform

distributions on carefully chosen sets of partial assignments.

VI. SEARCH VCSP(C , −)

If a class C of valued structures has bounded treewidth

modulo equivalence then the Sherali-Adams LP hierarchy

can be used to solve in polynomial time VCSP(C ,−), that

is, to compute the minimum cost of a mapping from A ∈ C
to some arbitrary valued structure B. However, it may be the

case that computing a mapping of that cost is NP-hard even

though we know that one exists. The search version of the

VCSP, denoted by SVCSP, explicitly asks for a minimum-

cost mapping.

Given a valued σ-structure A and a mapping g :
A �→ A, we define g(A) to be the valued σ-structure

over universe g(A) such that fg(A)(x) = fA(g−1(x)) =∑
y∈Aar(f):g(y)=x f

A(y), for all f ∈ σ and x ∈ g(A)ar(f). It

follows from [11, Proposition 12] and [11, Proposition 42]

that for every valued structure A there exists a mapping

g : A �→ A such that g belongs to the support of some

inverse fractional homomorphism from A to A and g(A) is

the core of A. If C is a class of valued structures, we denote

by CORE COMPUTATION(C) the problem that takes as input

some A ∈ C and asks to compute such a mapping g.
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Building on our results from Section V and adapting

techniques from [45], we show the following.

Theorem VI.1 (Search classification). Assume FPT �=
W[1]. Let C be a recursively enumerable class of valued
structures of bounded arity. Then, the following are equiva-
lent:

1) SVCSP(C , −) is in PTIME.
2) C is of bounded treewidth modulo equivalence and

CORE COMPUTATION(C) is in PTIME.

Proof sketch: We start with the implication (2) ⇒ (1).

Suppose that C has treewidth modulo equivalence at most

k for some k ∈ N and that CORE COMPUTATION(C) is

in PTIME. Let (A,B) be an instance of SVCSP(C , −).

First, we invoke the polynomial-time algorithm for CORE

COMPUTATION(C) on the structure A. As observed in [11,

Proposition 10], composing the mapping g thus obtained

with any minimum-cost mapping h from g(A) to B yields

a minimum-cost mapping from A to B. We then combine a

straightforward branching algorithm with Theorem V.1 to

construct an integral optimal solution to SAk+1(g(A),B)
in polynomial time, which provides a suitable mapping h.

For this step, the key property is that introducing any set

of fresh unary functions to g(A) (for branching purposes)

cannot increase its treewidth modulo equivalence because it

is a core.

One part of the implication (1) ⇒ (2) is immediate

by Theorem IV.1: if SVCSP(C , −) is in PTIME, then C
is of bounded treewidth modulo equivalence (under our

assumptions). For the second part we proceed in two steps.

First, we show that there is a polynomial-time Turing reduc-

tion from CORE COMPUTATION(C) to a slightly different

problem REDUCTION STEP(C), which takes as input a

structure A ∈ C together with a mapping g : A �→ A
that belongs to the support of at least one inverse fractional

homomorphism from A to A. The goal of REDUCTION STEP

is to compute a mapping g+ that also belongs to the support

of at least one inverse fractional homomorphism from A

to A and such that g+(A) � g(A). Adapting a strategy

from [45], we reformulate the problem of computing such a

mapping g+ as a linear program (with exponentially many

variables) and show that its dual admits a polynomial-time

strong separation oracle. This oracle makes crucial use of

the assumed polynomial-time algorithm for SVCSP(C , −).

It then follows from standard combinatorial optimisation

techniques [30, Lemma 6.5.15] that REDUCTION STEP(C)

(and hence CORE COMPUTATION(C)) can be solved in

polynomial time, which establishes the claim.

VII. RELATED PROBLEMS

In this section we provide tight complexity bounds for

several problems related to our characterisations. (For com-

plete proofs, we refer the reader to [11].) All lower bounds

follow from existing results on relational structures or

{0,∞}-valued structures. For the upper bounds, we need

the results from previous sections, especially, the machinery

developed in Section III.

Proposition VII.1. We have the following:
1) Given two valued structures A, B, deciding whether A

improves B is NP-complete. Similarly, deciding whether
A and B are equivalent is NP-complete.

2) Given a valued structure A, deciding whether A is a
core is coNP-complete.

3) For every fixed k ≥ 1, the following problems are NP-
complete:

a) Given a valued structure A, decide whether the
treewidth of the core of A is at most k.

b) Given a valued structure A, decide whether the
Sherali-Adams relaxation of level k is always tight
for A.

VIII. APPLICATION TO DATABASE THEORY

It is well known that the evaluation/containment problem

for conjunctive queries (CQs) (i.e., first-order queries using

only conjunction and existential quantification) is equivalent

to the homomorphism problem, and hence equivalent to

CSPs [12], [33]. This observation has been fundamental in

providing principled techniques for the static analysis and

optimisation of CQs. Indeed, in their seminal work [12],

Chandra and Merlin exploited this connection to show that

the containment and equivalence problem for CQs are NP-

complete. They also provided tools for minimising CQs with

strong theoretical guarantees. In terms of homomorphisms,

minimising a CQ corresponds essentially to computing the

(relational) core of a relational structure.

The situation is less clear in the context of annotated

databases [28]. In this framework, the tuples of the database

are annotated with values from a particular semiring K, and

the semantics of a CQ is a value from K. For instance,

the Boolean semiring ({0, 1},∨,∧, 0, 1) gives us the usual

semantics of CQs, and the natural semiring (N,+,×, 0, 1)
corresponds to the so-called bag semantics of CQs. Another

semiring considered in the literature is the tropical semiring

(Q≥0,min,+,∞, 0), which provides a minimum-cost se-

mantics [28]. Unfortunately, the homomorphism machinery

cannot be applied directly to the study of containment and

equivalence in the semiring setting. While there are some

works in this direction (see, e.g. [36], [27]), several basic

problems remain open. In particular, the precise complexity

of containment/equivalence of CQs over the tropical semir-

ing is open (it was shown in [36] to be NP-hard and in

Πp
2, the second level of the polynomial-time hierarchy). Our

first observation is that these two problems are actually NP-

complete. Indeed, it is well known that VCSP is equivalent

to CQ evaluation over the tropical semiring. Moreover, con-

tainment and equivalence of CQs over the tropical semiring

correspond to improvement and (valued) equivalence of
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valued structures. By applying Proposition VII.1, item (1),

we directly obtain NP-completeness of these problems.

Our second observation is that our notion of (valued)

core provides a notion of minimisation of CQs over the

tropical semiring with theoretical guarantees. Indeed, as

pointed out in item (iii) at the end of Section III, the

core of a valued structure is always an equivalent valued

structure with minimal number of elements, or in terms of

CQs, with minimal number of variables. Also, as the core

is computable (item (v) at the end of Section III), we have

an algorithm to compute the core of a CQ over the tropical

semiring. (In fact, a PSPACE algorithm.) Finally, it is worth

mentioning that our classification result from Theorem IV.1

can be interpreted as a characterisation of the classes of CQs

over the tropical semiring that can be evaluated in PTIME.
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[44] J. Thapper and S. Živný, “The power of linear programming
for valued CSPs,” in Proceedings of the 53rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS’12).
IEEE, 2012, pp. 669–678.

[45] ——, “The complexity of finite-valued CSPs,” Journal of the
ACM, vol. 63, no. 4, 2016, article No. 37.

[46] ——, “The power of Sherali-Adams relaxations for general-
valued CSPs,” SIAM Journal on Computing, vol. 46, no. 4,
pp. 1241–1279, 2017.

[47] D. Zhuk, “A proof of CSP dichotomy conjecture,” in Proceed-
ings of the 58th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’17). IEEE, 2017, pp. 331–342.

246


