
Near-Optimal Approximate Decremental All Pairs Shortest Paths

Shiri Chechik

Tel Aviv University, Israel.
shiri.chechik@gmail.com

Abstract—In this paper we consider the decremental approx-
imate all-pairs shortest paths (APSP) problem, where given a
graph G the goal is to maintain approximate shortest paths
between all pairs of nodes in G under a sequence of online
adversarial edge deletions.

We present a decremental APSP algorithm for
undirected weighted graphs with (2 + ε)k − 1 stretch,
O(mn1/k+o(1) log (nW )) total update time and O(log log (nW ))
query time for a fixed constant ε, where W is the maximum
edge weight (assuming the minimum edge weight is 1) and k
is any integer parameter. This is an exponential improvement
both in the stretch and in the query time over previous works.

Keywords-dynamic algorithms; shortest paths; emulator;

I. INTRODUCTION

Dynamic algorithms are data structures that are designed

to handle an online sequence of update operations while

maintaining some key functionality on the graph. A notable

and very well studied example is dynamic shortest paths. An

update usually involves adding or removing a node or an

edge from the graph. The algorithm is said to be decremental
if it handles only deletions, incremental if it handles only

insertions and fully dynamic if it handles both deletions and

insertions.

In this paper we consider the problem of decremental

(approximate) all pairs shortest paths (APSP) in weighted

undirected graphs. Our algorithm supports the following two

operations: 1. Delete(e) – delete the given edge e from the

graph. 2. Distance(u, v) – return an estimate on the distance

between u and v in the current graph G.

We say that the algorithm has stretch k if the returned esti-

mated distance is always at least the real distance and at most

k times the real distance. More formally, let d̂ist(u, v) denote

the estimated distance returned by the algorithm on a query

(u, v). An algorithm has stretch k, if at any given time for any

query (u, v) we have dist(u, v) ≤ d̂ist(u, v) ≤ k× dist(u, v),
where dist(u, v) is the actual distance between u and v in

the current version of the graph (the graph after all deletions

occurred so far). A key concern in designing dynamic shortest

paths algorithms is to minimize the update time, namely, the

time it takes the algorithm to adapt to an update. Another

important goal is to minimize the query time, that is, the time

it takes the algorithm to answer a query. Typically, the query

time is expected to be small (polylog or even better constant)

while minimizing the update time. Finally, since we deal

with approximate shortest paths algorithms, we would like to

minimize the stretch as much as possible. In the decremental

setting, we usually measure the aggregate sum of the update

times over all deletions, which is referred to as the total update
time.

Related work: The first non-trivial bound maintaining

decremental single source shortest paths (SSSP) is due to Even

and Shiloach [14]. More precisely, they presented a decre-

mental SSSP for undirected, unweighted graphs with O(mn)

total update time1. A similar scheme was independently found

by Dinitz [13]. Henzinger and King [15] later observed that

the algorithm of Even and Shiloach can be easily adapted to

directed graphs. King [22] later generalized this algorithm to

directed graphs with small edge weights. Additional optimiza-

tions for the memory usage and conditional lower bounds can

be found in [22], [23], [24], [21].

In the randomized approximate decremental undirected

SSSP there was a lot of progress in recent years [10], [19],

[17] culminating in the breakthrough result of Henzinger,

Krinninger and Nanongkai [17] who presented a (1 + ε)

approximate decremental SSSP algorithm with near linear

total update time of O(m1+o(1) log (nW )), where W is the

maximum edge weight (assuming the minimum edge weight

is 1). The first deterministic (1+ ε) SSSP algorithm that goes

beyond the O(mn) total update time was presented in [9] with

Õ(n2) total update time 2. This result was later improved for

sparse graph [9] and was also generalized to weighted graphs

[8]. For further recent progress on the approximate directed

SSSP see [18], [20].

We now turn our attention to the dynamic APSP problem,

which has been extensively studied in the last three decades.

There has been a large number of papers considering the

dynamic APSP problem, of which we describe just the most

up to date. For the fully dynamic case, there was a long

chain of papers culminating in the breakthrough result of

Demetrescu and Italiano [12], who devised a fully dynamic

exact APSP for directed general graphs with non negative

edge weights, with amortized cost of Õ(n2). This was later

extended by Thorup [27] to handle negative edge weights.

1As usual, n (respectively, m) is the number of nodes (resp., edges) in the

graph.
2Here and throughout, the Õ(·) notation hides both logarithmic factors in

n and small polynomials in 1/ε factors.

170

2018 IEEE 59th Annual Symposium on Foundations of Computer Science

2575-8454/18/$31.00 ©2018 IEEE
DOI 10.1109/FOCS.2018.00025



Thorup [28] obtained later a fully dynamic exact APSP with

worst case update time of Õ(n2.75). Bernstein [6] presented

fully dynamic APSP with 2+ε stretch, O(log log log n) query

time, and Ô(m) amortized update time, where Ô(f(n)) =

f(n)nO(1/
√
logn). Baswana, Khurana, and Sarkar [4] pre-

sented a fully dynamic APSP algorithm for undirected un-

weighted graphs such that for an integer parameter k, the

construction of [4] has stretch 4k, Ô(n1+1/k) amortized

update cost, and O(log log log n) query time. Sankowski [26]

used matrix multiplication in unweighted graphs and achieved

subquadratic worst-case update time of O(n1.932) at the cost

of a superlinear query time of O(n1.288).

Much of the work on dynamic APSP considers partially

dynamic algorithms, namely, incremental or decremental so-

lutions. Roditty and Zwick [25] presented very efficient ran-

domized dynamic (1 + ε) APSP for the only incremental

and for the only decremental cases for undirected unweighted

graphs with total update time of Õ(mn), O(1) query time and

Õ(n2) space. The result of Roditty and Zwick [25] was later

derandomized by Henzinger et al. at the cost of a slightly

larger query time of O(log log n). Moreover, Bernstein [7]

generalized this result for directed weighted graphs, at the

cost of an additional log (nW ) factor for the total update time.

Roditty and Zwick [25] also presented a decremental APSP

algorithm with Õ(mn) total update time, (2k−1) stretch and

O(k) query time with smaller space of O(m+n1+1/k). Bern-

stein and Roditty [11] later presented a decremental APSP for

unweighted undirected graphs with (2k−1+ ε) stretch, O(k)

query time and total update time of Õ(n2+1/k+O(1)/
√
logn).

Note that all the above mentioned results do not break the

O(mn) total update time barrier for sparse graphs even for

a very large stretch. Attempts were also made to break this

O(n2) barrier. There are two previous results that managed to

get decremental APSP algorithm beyond the O(n2) barrier,

however these results have a huge stretch especially as we

approach near linear total update time. Abraham, Chechik,

and Talwar [1] presented a decremental all-pairs shortest paths

for undirected unweighted graphs with stretch 2O(ρk) in total

update time Õ(mn1/k) and with O(kρ) time per query, where

ρ = (1+� logn1−1/k

log (m/n1−1/k)
�). The near linear decremental SSSP

result of Henzinger, Krinninger and Nanongkai [17] allowed

them also to obtain a decremental all-pairs shortest paths

(APSP) for undirected weighted graphs with (2 + ε)k − 1

stretch, O(kk) query time and O(m1+1/k+o(1) log2 (nW ))

total update time.

In the static regime of computing approximate APSP effi-

ciently, Thorup and Zwick [29] in a seminal paper presented

a distance oracle with O(k) query time to, 2k − 1 stretch,

O(kn1+1/k) expected space, and O(kmn1/k) construction

time. Baswana and Kavitha [3] addressed the question of

improving the construction time for dense graphs. Their

construction time is O(n2 log n) and with query time of O(k)

for k > 2 and of Θ(log n) for k = 2. Baswana et al. [2]

presented a distance oracle with subquadratic construction

time when m = o(n2) at the cost of introducing additional

additive stretch. Wulff-Nilsen [30] further improved the con-

struction time for dense graphs. He presented a distance oracle

with 2k − 1 stretch, O(kn1+1/k) size, O(k) query time and

O(
√
km + kn1+c/

√
k) construction time for some absolute

constant c.

Our result: We present a decremental APSP algo-

rithm for undirected weighted graphs with (2 + ε)k −
1 stretch, O(mn1/k+o(1) log (nW )) total update time and

O(log log (nW )) query time, for any integer parameter k. Our

algorithm is randomized and assumes an oblivious adversary,

that is, the future sequence of edge deletions do not depend on

the algorithms past queries. The assumption of an oblivious

adversary is very common when dealing with randomized

dynamic algorithms and in particular previous approximate

dynamic APSP algorithms [1], [17] were also randomized and

assumed an oblivious adversary. Our result is an exponential

improvement both in the stretch and in the query time over

previous work [1], [17]. Moreover, our total update time

almost match the best known bounds in the static case (up

to poly logarithmic factors and dependence on ε), e.g. the

bounds by Thorup and Zwick distance oracle [29], at the cost

of an additional 1 + ε factor in the stretch. Note that though

some improvements were made on the construction time of

Thorup and Zwick distance oracle [29], these improvements

are for some range of graph density and k. In particular, for

sparse graph the O(kmn1/k) construction time of Thorup and

Zwick distance oracle [29] is still the state of the art.

In previous dynamic approximate shortest paths algorithms

there were essentially two approaches used. The first was used

by Roditty and Zwick [24] and was based on dynamically

maintaining the Thorup-Zwick distance oracle. In the Thorup-

Zwick distance oracle a collection of trees is maintained,

where every node belongs only to a small number of trees.

One of the technical challenges in maintaining the Thorup-

Zwick distance oracle in the dynamic setting is that during the

course of the algorithm, a node may join many trees. Recall

that in the Even-Shiloach (ES ) algorithm we pay the degree

deg(v) of the node v each time its distance from the root

increases. We therefore pay for each node the degree times

the maximum distance d. Roditty and Zwick’s algorithm [24]

is based on the following two claims. First, if a node belongs

to a tree T but it joins the tree at distance i from the root

and leaves at distance j from the root, the total update time

spent on v between the time it joins the tree and the time it

leaves the tree is O(deg(v)(j−i)) (rather than O(deg(v) ·d)).
Second, for each specific distance i such that 1 ≤ i ≤ d, the

number of trees T such that v is part of and is at distance i

171



from the root of T is bounded by O(n1/k). Combining these

two claims, Roditty and Zwick [24] obtained their decremental

approximate APSP with (2k − 1) stretch and O(m · n1/k · d)
total update time for distances up to d.

The second approach [1], [17] used a different clustering

approach than the Thorup-Zwick distance oracle that bounds

better the total number of trees a node may belong to during

the entire course of the algorithm. Specifically, [1], [17] show

a construction that maintains a collection of trees such that

every node v is part of at most Õ(n1/k) distinct trees during

the entire course of the algorithm. For each such tree T ,

[1], [17] invoke Monotone Even-Shiloach algorithm on an

emulator, which requires O(|E(T )|1+o(1)) total update time.

Where an emulator is a graph (not necessarily a subgraph)

that approximately preserves distances of the original graph

G. The emulator of [1], [17] has the key property that every

two vertices have a path P in the emulator of length “close”

to the length of their shortest in G and in addition P consists

of a “small” number of edges. This gave a total update time

of O(mn1+1/k+o(1)). However, in order to guarantee this

nice property that every node during the entire course of the

algorithm is contained in a small number of trees, previous

constructions [1], [17] had to pay a huge exponential in k

stretch, this large stretch seems to be essential in previous

constructions in order to allow small overlap between the trees.

In this paper, we essentially combine these two approaches

by introducing a new clustering approach. Instead of using

the Thorup-Zwick distance oracle and trying to maintain it

dynamically, we rather suggest a new clustering approach that

loosely speaking starts by handling dense areas and slowly

moves to sparser and sparser areas while ignoring dense areas

that were covered before. This approach uses hierarchical trun-

cated trees. The idea of truncated trees appeared in somewhat

different context [5] by Baswana et al. where the goal was to

handle a single failure in the context of distance oracles. We

extend on this idea and show how to maintain such efficient

clustering in the dynamic setting. This approach is non trivial

to maintain in the dynamic setting while keeping both the

stretch and running time low as dense areas might become

sparse at some point. We show that this clustering approach

obtains similar bounds as in the Thorup and Zwick distance

oracle but with the additional crucial property that in our

construction every node belongs to at most O(n1/k) trees

during the entire course of the algorithm. This crucial property

allows us to maintain monotone Even-Shiloach on an emulator

in each such tree.

The use of monotone Even-Shiloach algorithm on an emu-

lator rather than simply invoking Even-Shiloach algorithm on

the graph greatly complicates the analysis. We present a new

construction of a dynamic emulator that keeps the hop-set of

the graph low and maintains some other key properties. This

construction is somewhat similar to the one given by Hen-

zinger, Krinninger and Nanongkai [17], where they present a

(1+ε) decremental single source shortest paths (SSSP) in near

linear total update time of O(m1+o(1) log (nW )). We note that

it is likely that we can combine our new clustering approach

with Henzinger et al. emulator [17]. However, we find the

emulator presented in this paper slightly more direct and

appropriate for the dynamic setting. Moreover, our dynamic

emulator is much sparser and contains only O(n1+o(1)) edges

whereas the emulator of [17] contained O(m1+o(1)) edges.

We believe that this emulator with the improved size could

be of independent interest. Roughly speaking, the emulator

of Henzinger et al. starts by using the static Thorup-Zwick

[29] distance oracle and maintains some properties of it

dynamically. This complicated the construction and analysis

of the emulator, as it uses some heavy structure of clusters

and bunches. We rather present a more direct approach for

maintaining an emulator by presenting a different static em-

ulator and dynamically maintaining this emulator. Note that

there are essentially two clustering used in this paper and in

[17], one for maintaining the emulator itself and the second

is for maintaining shortest paths trees on the emulator.

Our emulator will also give similar bounds for the Decre-

mental SSSP of O(m1+o(1) log (nW )) total update time.

II. PRELIMINARIES

We let G = (V,E) to always refer to the current version

of the graph (the graph after all deletions occurred so far).

Let dist(u, v,H) for nodes u and v and a graph H be the

distance between u and v in H . When H = G we simply write

dist(u, v), that is, dist(u, v) = dist(u, v,G). Let dist(u,A) for

a node u and a subset A of the nodes be the minimal distance

dist(u, v) for v ∈ A. For a node v and distance d, let B(v, d)

be all nodes at distance at most d from v, namely, B(v, d) =

{u ∈ V | dist(u, v) ≤ d}, and, let B−(v, d) be all nodes at

distance strictly less than d from v, namely, B−(v, d) = {u ∈
V | dist(u, v) < d}. For a graph H , let V (H) be the nodes

in H and let E(H) be the edges of H . For a weighted graph

H and an edge (u, v) ∈ E(H) let ω(u, v,H) be the weight

of the edge (u, v) in H .

We next state the classic decremental SSSP of Even and

Shiloach [14] that was later generalized by King [22] to

directed weighted graphs.

Lemma 2.1: [14], [22] Let G = (V,E) be a dynamic

weighted graph and s be a fixed source such that all weights in

G are multiples of β for some parameter β. The Even-Shiloach

tree ES(G, s, d) decrementally maintains single source short-

est paths tree from s up to distance d in total update time of

O(m · d/β).

172



Remark 2.2: The result of the ES-tree is usually stated

without the β term. That is, maintaining SSSP for graph with

integer weights takes O(m · d) total update time. However, if

all edge weights are multiples of some term β, one can simply

reduce to the previous case by diving all edge weights by β

(and returning the distance returned by the ES-tree multiply

by β in the query phase). This observation is due to Bernstein

[6].

The classic ES algorithm can only handle edge deletions.

Or to be more precise, it can handle both edge deletions and

edge insertions under the assumption that distances never
decrease. Henzinger et al. [16] developed a modification

of this algorithm which can handle occasional distance

decreases, which they called the Monotone Even-Shiloach

algorithm, denoted MES(monotone Even-Shiloach). The basic

idea is that MES simply ignores distance decreases. More

precisely, the classic ES algorithm from a root w maintains

for every vertex v a distance label d̂(w, v) with the guarantee

that we always have d̂(w, v) = dist(s, v). MES, on the other

hand, will only guarantee that d̂(w, v) ≥ dist(s, v). It does

so by running classical ES, with one modification: whenever

classic ES adds an edge (u, v) to the shortest path tree, it sets

d̂NEW(w, v) = min
{
d̂(w, u) + ω(u, v), d̂OLD(w, v)

}
.

MES, on the other hand, sets d̂NEW(w, v) =

max
{
d̂(w, u) + ω(u, v), d̂OLD(w, v)

}
. See the full version

for further discussion on Even-Shiloach and monotone

Even-Shiloach.

Definition 2.3: Let MES(G,s,d) refer to running monotone

Even-Shiloach from a fixed source s up to distance d. In

particular, whenever we have d̂(s, v) > d, we remove v from

the graph.

Note that MES does not guarantee any approximation ratio

that would work for an arbitrary sequence of insertions and

deletions. Every invocation of MES will require a separate

approximation error analysis to show that for the particular

graph and update sequence at hand, d̂(s, v) remains a good

approximation to dist(s, v). However, the asymptotic bound

of the running time of MES is similar to ES.

To ease presentation, we show algorithms with (2 +

O(ε))k − 1 stretch rather than (2 + ε)k − 1 stretch, to get

the desired (2+ ε)k− 1, one can simply invoke the algorithm

with ε′ = ε/c for large enough constant c. This will only

increase the running time bound by a constant factor. In

addition, to simplify the presentation we present our result

for the unweighted case and with slightly larger query time.

In the full version we explain the modifications needed to

handle weighted graphs and how to improve the query time.

The rest of the paper is organized as follows. In Section III

we present a simpler version of our algorithm that uses exact

ES algorithm with larger total update time of Õ(mn1+1/k). In

Section IV we show how the use of an emulator and MES with

the techniques from Section III can reduce the total update

time to O(mn1/k+o(1)). In the full version we give a detailed

explanation of our emulator. For simplicity, our data structure

returns distances rather than paths. Our data structure can also

be tweaked to return paths (in additional time proportional to

the number of edges on the path). Some of the proofs are

deferred to the full version.

III. WARMUP: APSP ALGORITHM WITH EXACT

EVEN-SHILOACH AND HIGH LEVEL IDEA OF OUR

CLUSTERING APPROACH

We present a construction that for a given distance d runs

in total update time of Õ(mn1/k ·d) and for every query (s, t)

returns a distance d̂ist(s, t) such that dist(s, t) < d̂ist(s, t) and

in addition if dist(s, t) < d then d̂ist(s, t) ≤ ((2+ε)k−1)d. To

get the decremental ((2+ε)k−1)-APSP we simply invoke this

construction on every d = (1+ε)i for 1 ≤ i ≤ log n and in the

query phase the algorithm invokes the query algorithm for all

distances (1+ ε)i for 1 ≤ i ≤ log n and returns the minimum

distance found. This incurs an additional log n factor to the

total update time and log n factor to the query time (that can

be reduced to log logn factor using binary search).

High Level Intuition of Our Clustering Approach: The

main novelty of our clustering approach is that it can be

easily adapted to the dynamic setting while maintaining the

crucial property that each node is added to a small number

of clusters during the entire course of the algorithm. Our

clustering approach works for a given distance d and loosely

speaking works as follows.

The algorithm samples subset of the nodes Ai uniformly

at random such that each subset Ai contains in expectation

Õ(n(k−i)/k) nodes for 0 ≤ i ≤ k − 1, by sampling every

node independently at random with Õ(1/ni/k) probability. For

each node w ∈ Ai, the algorithm computes and maintains the

cluster C(w) loosely defined as follows. A node v ∈ C(w)

if the following two conditions hold. First, the distance from

w to v is at most O(k · d) (the constant in the O(k · d) term

will be fixed later on). Second, there is no node w′ ∈ Aj

for j > i such that dist(w′, v) ≤ dist(w, v) + ε(j − i)d. Let

pi(v) be the closest node to v in Ai. (For comparison, in

the Thorup-Zwick distance oracle[29] the cluster CTZ(w) for

w ∈ Ai\Ai+1 is defined as CTZ(w)← {v ∈ V | dist(v, w) <
dist(v, pi+1(v))}).

We will later see that returning dist(pi(s), t)+dist(pi(s), s)
or dist(pi(t), s) + dist(pi(t), t) for the minimal index i such

t ∈ C(pi(s)) or s ∈ C(pi(t)) gives the desired stretch.

We also need to show that we can maintain these clusters

efficiently. In the static case, a similar argument to the one

173



used in the Thorup-Zwick distance oracle[29], can show

that w.h.p. B−(v, dist(v, pi+1(v))) contains at most n(i+1)/k

nodes. To see this, consider the nodes in increasing order

of their distance from v. As every node in Ai+1 is sampled

with probability Õ(1/n(i+1)/k) then by Chernoff bound w.h.p.

Ai+1 contains a node in the first n(i+1)/k nodes of that order.

This implies that B−(v, dist(v, pi+1(v))) contains at most

n(i+1)/k nodes w.h.p. Note that this claim is true w.h.p. in any

given time of algorithm. It follows that the number of nodes

B−(v, dist(v, pi+1(v)))∩Ai is Õ(n1/k) in expectation. In the

static version, it is therefore sufficient to simply add v to the

cluster of all nodes in B−(v, dist(v, pi+1(v))) ∩ Ai. In the

dynamic regime, things are more complicated as it might be

that after some time the distance dist(v,Ai+1) increases even

just by 1 and the new set of nodes B−(v, dist(v, pi+1(v)))∩Ai

is completely different than the previous set. Hence, adding v

to all these clusters might cause v to join to too many clusters

during the entire course of the algorithm. To overcome this, we

are a bit more careful with the clusters we add v to. Instead

of adding v to all clusters of B−(v, dist(v, pi+1(v))) ∩ Ai,

we only add v to the clusters of nodes w ∈ Ai that are

much closer to w than to pi+1(v) by at least εd. It follows

that the first time v will be added to the clusters w ∈ Ai

such that w is not in B−(v, dist(v, pi+1(v))) ∩ Ai is when

dist(v, pi+1(v)) increases by at least εd. Since our clusters are

trimmed by distance O(kd), this can happen at most O(k/ε)

times. Therefore, each time dist(v, pi+1(v)) increases by at

least εd, the entire ball B−(v, dist(v, pi+1(v))) ∩ Ai may

change completely but we still have the property that the new

set B−(v, dist(v, pi+1(v))) ∩ Ai contains Õ(n1/k) nodes. In

other words, our analysis is roughly as follows. Let d1i+1(v) =

dist(v, pi+1(v)) be the initial distance between v and pi+1(v).

Note that, initially we have |B−(v, d1i+1(v))∩Ai| ≤ Õ(n1/k)

and that as long as dist(v, pi+1(v)) ≤ d1i+1(v) + εd, v

may join the clusters of only nodes in B−(v, d1i+1(v)) ∩ Ai.

Once dist(v, pi+1(v)) > d1i+1(v) + εd, we define d2i+1(v) =

dist(v, pi+1(v)) (note that d2i+1(v) > d1i+1(v) + εd). Note

also that by the same reasoning as before we now have

|B−(v, d2i+1(v)) ∩ Ai| ≤ Õ(n1/k) and that as long as

dist(v, pi+1(v)) ≤ d2i+1(v) + εd v may only join clusters

of nodes in B−(v, d2i+1(v)) ∩ Ai and so on. As the tree is

trimmed at distance O(kd), this process can continue O(k/ε)

times and each time we show that v may join the clusters of

at most Õ(n1/k) nodes.

The construction for distance d: The algorithm computes

a collection A0, A1, ..., Ak−1 of subsets of the nodes as

follows. Each Ai is obtained by independently sampling every

node in V with probability min{1, c log n/ni/k}, where c is a

large enough constant. We have E[|Ai|] = O(log n ·n(k−i)/k)

for every 1 ≤ i ≤ k − 1. Note also that A0 = V .

The algorithm maintains for every node w ∈ Ai, a subset

C(w) of the nodes, hereafter referred to as the cluster of w

(where some nodes may be added to or removed from this

subset during the course of the algorithm). In addition, it

maintains an ES tree T (w) for every node w ∈ Ai on C(w).

Let d̂(w, v) be the distance between w and v in the ES tree

T (w). We will later see that d̂(w, v) = dist(w, v).

The cluster of a node w ∈ Ai is defined as follows. Every

node v ∈ V belongs to C(w) if the following two conditions

hold. First, there is no node w′ ∈ Aj for j > i such that

dist(w′, v) ≤ dist(w, v) + ε(j − i)d. Second, dist(w, v) ≤
(1+ ε)(i+1)d. Note that w may belong to more than one Ai.

In this case we define C(w) according to the smallest index i

such that w ∈ Ai. For every node v and index i the algorithm

also stores and maintains pi(v), the closest node in Ai

The way to efficiently construct and maintain the trees is a

bit technical, we therefore due to space limitations is deferred

it to the full version (together with most of the proofs). The

important take-away is that we can construct and maintain the

trees T (w) such that V (T (w)) = C(w) in the desired total

update time.

The query algorithm: Given are two nodes s and t. Find

the minimal index i such that either s ∈ T (pi(t)) or t ∈
T (pi(s)). If no such index is found return ∞. Otherwise, if

s ∈ T (pi(t)) then return d̂(pi(t), s) + d̂(pi(t), t) else return

d̂(pi(s), t) + d̂(pi(s), s).

Analysis:

Lemma 3.1: Consider w ∈ Ai. If a node v belongs to C(w)

then every node z on the shortest path P (v, w) from v to w

is also in C(w).

The next auxiliary claim is a simple corollary of the

definition of clusters.

Claim 3.2: Consider a node v. Let dist(v,Ai+1) = d′. For

every w′ ∈ Ai such that dist(v, w′) ≥ d′ − εd we have v /∈
C(w′).

The next lemma bounds the number of trees T (w) to which

a node v ever belonged to.

Lemma 3.3: Consider a node v. During the entire running

time of the algorithm, the total number of distinct clusters v

ever joined to is O(log n · k2 · n1/k/ε) in expectation.

The next lemma bounds the total running time of the

algorithm.

Lemma 3.4: The expected total update time of the algo-

rithm is Õ(mn1/kd).

The next lemma bounds the stretch.

Lemma 3.5: Consider two nodes s and t. If dist(s, t) ≤ d

then the algorithm returns at most (2(1 + ε)k − 1)d.

174



Proof: Consider two nodes s and t whose distance is at most

d.

To prove the claim, notice that we only need to prove

that there is an index i such that either 1. t ∈ T (pi(s))

and dist(s, pi(s)) ≤ (1 + ε)i · d or 2. s ∈ T (pi(t)) and

dist(t, pi(t)) ≤ (1+ε)i ·d. To see this, recall that the depth of

all trees is at most (1+ ε)kd and that i ≤ k− 1. Consider the

maximal index i such that either dist(s, pi(s)) ≤ (1 + ε)i · d
or dist(t, pi(t)) ≤ (1 + ε)i · d. (note that there is such

an index as dist(s, p0(s)) = dist(s, s) = 0 as all nodes

belong to A0). Assume w.l.o.g. that for this index i we

have dist(s, pi(s)) ≤ (1 + ε)i · d. Note that by triangle

inequality, dist(t, pi(s)) ≤ (1+ ε)i ·d+d. Assume, towards a

contradiction, that t /∈ T (pi(s)). As V (T (pi(s))) = C(pi(s))

we also have t /∈ C(pi(s)). By definition of C(pi(s)) we have

that there exists a node w′ ∈ Aj for some j > i such that t ∈
T (w′) and dist(t, w′) ≤ (1+ε)i·d+d+ε(j−i)d ≤ (1+ε)·j ·d.

Since dist(t, pj(t)) ≤ dist(t, w′) we get a contradiction to the

maximality of i. Hence, t ∈ T (pi(s)).

IV. IMPROVING THE RUNNING TIME USING AN EMULATOR

In this section we show how to reduce the total update

time to O(mn1/k+o(1)). The main difference with the previous

algorithm is that here we do not use exact ES but rather invoke

an MES on our Emulator. The emulator approximates the

distances in the graph G. In addition, for every shortest path

in G, the emulator has an alternative shortest path that closely

approximates the distances in G and has a small number of

edges. As already shown in previous papers (see e.g. [7])

maintaining decrementally shortest path up to a bounded hop-

length can be done efficiently, where a hop-length of a path

is the number of edges on it.

A. Main properties required from the Emulator

We next summarize the main properties we need from this

emulator.

We need first to set some parameters. We set t =
√
log n

and ε2 = ε/(ck log n) for large enough constant c. Our

emulator uses subsets of the nodes Z0, .., Zt−1, obtained as

follows. For every i such that 0 ≤ i ≤ t− 1, obtain a set Zi

by sampling every node with probability min{1, c log n/ni/t}
for some sufficiently large constant c. To slightly simplify the

analysis we also add to Zi all sets Zj for j > i. Note that

E[|Zi|] = O(log n · n(t−i)/t) and that Z0 = V .

The following definition summarizes the properties of the

emulator and it uses the sets Z0, .., Zt−1. Note that the

sets Z0, .., Zt−1 are not the same as sets A0, ..., Ak−1 from

previous section and is obtained by using a different sample

realizations (in particular we might have t �= k).

Definition 4.1 ((d̃, ε1, ε2)-emulator): We say that a dy-

namic set of edges E∗ is a (d̃, ε1, ε2)-emulator if the following

conditions hold.

(1) For every i such that 0 ≤ i ≤ t − 1, there is a subset

Ti of the nodes Zi with the following properties. For every

node w ∈ Ti, E
∗ has edges from w to all nodes v such that

dist(w, v) ≤ �d̃ · (6/ε2)i+1/2� (and perhaps to some other

nodes as well). If a node w ∈ Zi \ Ti then there is a node

w′ ∈ Tj for some j > i such that the distance from w to w′

is at most 3d̃(6/ε2)
j . In this case we say that w′ covers w.

(2) The weight of all edges satisfy the following:

(2.1) The weight of all edges in E∗ are of at least the distance

in G.

(2.2) The weight of all edges in E∗ is with at most 1 + ε1
stretch or at most 8d̃. That is, for every edge (w, v) ∈ E∗

we have that either ω(w, v,E∗) ≤ (1 + ε1)dist(w, v) or

ω(w, v,E∗) ≤ 8d̃.

(2.3) The weight of all edges are multiples of ε2d̃.

Property (1) is the property that is in charge on having

long enough shortcuts, where a shortcut is a direct edge in the

emulator of weight that is close to the distance between its

endpoints. We will later want to consider some shortest path P

and show that we can partition the path P into intervals where

each interval (perhaps but the last one) is of length at least d̃

and each such interval has an alternative path in the emulator

that consists of a constant number of hops. Consider a node

w ∈ Zi on P , by Property (1) either w itself had shortcuts in

E∗ to all nodes at distance �d̃ · (6/ε2)i+1/2� from it and in

particular to the node at distance �d̃ · (6/ε2)i+1/2� from it on

the path P . Otherwise, there is a node w′ ∈ Tj for some j > i

such that the distance from w to w′ is quite small (compare

to the length of the maximal shortcuts of w′), that is, at most

3d̃(6/ε2)
j and w′ has shortcuts to all nodes at distance at most

�d̃ · (6/ε2)i+1/2� from it. We can therefore pick a node z at

distance O(d̃ · (6/ε2)i+1) from w on P and show that w has

a two hops path to z (through w′). The length of the 2-hop

path is close to the shortest path as the distance from w to

w′ is quite small compare to the distance from w to z. Using

this reasoning we can show that we can partition the path P

into intervals with the properties mentioned above.

Property (2.1) verifies that the emulator never shrinks dis-

tances. Property (2.2) verifies that the distances in the emulator

are close to the shortest paths (notice that using the emulator

we lose in the approximation ratio both because the edges

in the emulator do not represent shortest paths but rather

good approximation to the shortest paths and second because

in order to get bounded hop paths we need to deviate from

the shortest path to close by nodes (e.g., the node w′ in the

explanation above)). Property (2.3) is used for the efficiently

of invoking MES on the emulator - we will later invoke

the emulator up to distance d̃ · no(1). If all distances are

175



multiples of ε2d̃ we can divide all weights by ε2d̃ and have

the depth of the tree be no(1) which is much more efficient

than maintaining the tree up to depth d̃ · no(1).

1) Some Intuition about the construction of the emulator.:
The construction algorithm gets a dynamic graph G′, a target

distance d and a parameter ε. Roughly speaking, the goal of

the emulator is to produce a dynamic graph Gout that handles

distances dout = d·no(1) (for large enough no(1) - we will have

the term no(1) to be roughly O(c/ε)
√
logn for some constant

c). As we will later see, the minimal edge weight in Gout is

d and all edge weights are multiples of εd. This will ensures

that invoking MES in the graph Gout up to distance d ·no(1)

takes O(|E(Gout)|no(1)) time.

Loosely speaking, we want that every node to either have in

the emulator shortcuts to all nodes at distance d from it or to

have a 2-hop path to every node in a far enough distance.

Consider a node v. If the number of nodes at distance at

most d from v is small enough then the algorithm can simply

add shortcuts (i.e. edges) between v and all nodes at most

d from it. Otherwise, the algorithm can group all nodes in

B(v, d) together and look at all the nodes at distance d/ε

from v. If the algorithm adds shortcuts from v to all nodes

at distance at most d/ε from v then all nodes in B(v, d)

will be satisfied, in the sense that they have 2-hop (1 + ε)-

approximate shortest paths to all nodes at distance roughly

d/ε from them. Since now more nodes will be satisfied by

adding these shortcuts, the algorithm can allow adding more

shortcuts. If the ball B(v, d/ε) is still too dense we continue

looking on the ball B(v, d/ε2) and so on. Each time we

look at larger and larger balls but we can add more and

more shortcuts (as more and more nodes will be satisfied

by these shortcuts). This process continues until there is a

sparse enough ball B(v, d/εi) or the ball makes all other nodes

satisfy. By allowing the number of shortcuts to be roughly

n1/
√
logn larger than the number of nodes that are satisfied

by these shortcuts (that is, looking for the minimal index i

such that |B(v, d/εi+1)| ≤ |B(v, d/εi)|n1/
√
logn), in each

such iteration either the algorithm finds a sparse enough ball

or the number of nodes in the ball increases by a n1/
√
logn

factor. This guarantees that the maximal distance considered

until finding a sparse enough ball is at most d/(ε
√
n).

This approach works well in the static case. However, in

the dynamic case fixing the center of the ball, i.e., the node v

can be problematic as the adversary can disconnects v from

the graph (by deleting all of its incident edges) making all

these shortcuts to be useless.

To overcome this, we use randomization. The random sets

Z0, ..., Zt are supposed to take care of the different density

of the nodes in the following sense. The algorithm maintains

MES trees from subsets of the nodes (referred to as i-active

nodes) in Z0, ..., Zt−1, such that the depth of the trees of

nodes in Zt−1 is the largest and the depth gets smaller and

smaller for trees of nodes w ∈ Zi as i decreases. The depth of

trees w ∈ Zi is d(c/ε)i+1. The algorithm adds to the emulator

shortcuts from w to all nodes in its tree. We say that a node

v is covered by w if the distance from v to w is at most

c′ · d(c/ε)i for some constant c′. Note that in this case v has

a 2-hop paths (through w) from it to far enough nodes (at

distance d(c/ε)i+1) and in addition these 2-hop paths to far

enough nodes are close to the original distances as the distance

from v to w is at most c′ ·d(c/ε)i which is much smaller than

d(c/ε)i+1. A node w ∈ Ai is i-active if either i = k − 1 or

there is no node w′ ∈ Zj for j > i that covers w.

Consider a vertex v and let i be the maximal index such

that the ball around v of radius d(6/ε)i (taking d(6/ε)i rather

than d(1/ε)i is done for technical reasons) contains more than

ni/t nodes. The set Zi is supposed to take care of v in the

following sense. W.h.p., Zi contains a node w in the ball

B(v, d(1/ε)i, G′). The algorithm maintains MES from w up

to distance d(1/ε)i+1 and therefore v is covered. To see that v

does not belong to too many trees, note that for any j ≥ i, the

only nodes w ∈ Zj that v may belong to their trees are nodes

at distance d(1/ε)j+1 from it, but by the maximality of i there

are less than n(j+1)/t such nodes. Moreover, as each node in

added to Zj independently with probability Õ(1/nj/t), then

in expectation there shouldn’t be more than Õ(n1/t) nodes in

B(v, d(1/ε)j+1, G′)∩Zj . Moreover, (by setting the parameters

right) all nodes in B(v, d(1/ε)i, G′) are also covered by w and

therefore will not be j-active for any j < i . For j < i, the

only nodes w ∈ Zj that v may belong to their trees are nodes

at distance d(1/ε)j+1 ≤ d(1/ε)i from it, but as mentioned

above all these nodes are already covered and therefore will

not be j-active. The nice thing in this approach is that it works

not only in the static case but also in the dynamic regime. The

index i described above may change, more precisely it may

decrease as balls around v may become sparser, but at any

given time w.h.p v belongs only to few trees of nodes w ∈ Zj

for j ≥ i and to no tree of a node w ∈ Zj for j < i.

However, in the dynamic regime, this approach by itself

is not enough. We want to take care of any distance and in

order to do it we need to invoke the MES for a large distance,

which will be too slow (even just for maintaining one MES).

To overcome this, we maintain a hierarchy of dynamic graphs

Em(E′, di, ε2) for exponentially growing distances di. Each

emulator Em(E′, di, ε2) is based on the previous emulator

Em(E′, di−1, ε2) making larger and larger shortcuts. This

makes the construction and analysis quite technical.

B. The Construction using the Emulator

Similarly to Section III, we focus on a construction that for

a given distance d runs in total update time of Õ(mn1/k+o(1))

176



and for every query (s, t) returns a distance d̂ist(s, t) such

that dist(s, t) < d̂ist(s, t) and in addition if dist(s, t) < d

then d̂ist(s, t) ≤ ((2 + ε)k − 1)d. To get the decremental

((2 + ε)k − 1)-APSP we again invoke this construction for

every distance d = (1 + ε)i for 1 ≤ i ≤ log n and in the

query algorithm returns the minimum distance found by one

of these data structures.

We set some parameters di = (6/ε2)
i·t. In the full version

we show how to compute dynamic graphs Gi for 1 ≤ i ≤
log n such that each dynamic graph Gi is a (di, (1+ ε2)

i, ε2)-

emulator.

The construction for distance d: The construction is very

similar to the construction presented in the previous section.

The sets A0, ..., Ak−1 are obtained exactly as in the previous

section and the pivots pi(v) for 0 ≤ i ≤ k− 1 are defined the

same.

Let μ be the maximal index such that dμ+1 < d. dμ will be

the target distance on which we use the emulator. Note that

on one hand, we want the target distance of the emulator to

be as close as possible to d so we have long enough shortcuts

in the emulator and on the other hand we have to have some

gap between the target distance of the emulator and d as the

additive stretch in the emulator depends on the target distance.

We set �i = dμ(6/ε2)
i+1 and β2 = 8�t−2 + 8dμ. We thus

have

β2 = 8�t−2 + 8dμ < 9�t−2 = 9dμ(6/ε2)
t−1

< dμ+1 · ε2 < εdμ+1/(k · log n) ≤ εd/(k · log n).

Construct the (dμ, (1 + ε2)
μ, ε2)-emulator Gμ. The algo-

rithm maintains MES trees T (w) in the graph Gμ for a subset

of the nodes w ∈ Ai. Some nodes may be added or removed

(perhaps multiple times) to the tree during the algorithm. Let

d̂(w, v) be the distance between w and v in the monotone tree

T (w) (or ∞ in case v /∈ T (w)).

Since we are using an emulator where both insertions and

deletions are allowed, we have to be a bit more careful in order

to maintain monotonicity. Specifically, the algorithm stores

d̂last(w, v) = d̂(w, v) - the last distance in the MES of T (w)

assigned to v. If v later joins again T (w), the distance assigned

to it will be at least the previous distance d̂last(w, v) (if v was

never in T (w) then d̂last(w, v) is 0).

We say that v is w-close if there is an edge (z′, v) such that

z′ ∈ T (w) and there is no index j > i such that d̂(pj(v), v) ≤
d̂(w, z′) + ω(z′, v) + ε(j − i)d and in addition d̂(w, z′) +
ω(z′, v) ≤ (1 + 2ε)(i+ 1) · d.

The trees of w ∈ Ak−1 initially contain all nodes at distance

at most (1+2ε)k ·d from w and are maintained by maintaining

MES tree from w up to distance (1 + 2ε)k · d in the graph

Gμ. Assume all trees on level i or higher were constructed

and consider w ∈ Ai. The tree of w is constructed as follows.

Initially, w ∈ T (w). The algorithm maintains in a heap H

all nodes that already have a neighbor in the constructed

tree T (w) (and were not previously removed from the heap).

Similarly to Dijkstra’s algorithm the algorithm picks the node

v with the smallest length of a path that is obtained by adding

a single edge (z, v) to the constructed tree T (w).

The algorithm checks if v is w-close (as z is the node z′

with minimal d̂(w, z′) + ω(z′, v) and z′ ∈ T (w), to check

if v is w-close, the algorithm simply examines the distance

d̂(w, z′) + ω(z′, v) against all distances d̂(pj(v), v)). If v is

w-close then the algorithm connects v to T (w) by adding the

edge (v, z).

In addition, the algorithm also maintains the following

heaps (these heaps will be used for the efficiency of the

update algorithm). For every j such that 0 ≤ j < k − 1,

and every vertex v, a heap Hj(v) containing the following

pairs: (w, (z, v)) for every edge (z, v) such that w ∈ Aj ,

z ∈ T (w) and v /∈ T (w). The value of (w, (z, v)) in the heap

is d̂(w, z) + ω(z, v).

In addition, the algorithm maintains for every vertex v, an

index 0 ≤ j < k − 1 and vertex w ∈ Aj such that v ∈ T (w),

a heap Hj(v, w) containing the following. All edges of the

form (u, v) such that u ∈ T (w) with value d̂(w, u)+ω(u, v).

(this heap will be used to find a replacement edge for v in

case the edge to its parent is deleted or in case the label of

its parent increases).

This concludes the construction.

The query algorithm: Given are two nodes s and t. Find

the minimal index i such that either s ∈ T (pi(t)) or t ∈
T (pi(s)). If s ∈ T (pi(t)) then return d̂(pi(t), s) + d̂(pi(t), t)

otherwise return d̂(pi(s), t) + d̂(pi(s), s). This concludes the

query algorithm.

We next describe the update algorithm. We note that we

need to slightly modify the update algorithm presented in

the previous section. In the previous section all distances are

shortest path distances in G, here this is not the case as we

consider distances in the emulator and we do not necessarily

have monotonicity in the distances (that is, some distances in

the emulator can shrink over time).

The update algorithm - Delete an edge (x, y): The goal

of the update algorithm is to make sure that by the end of the

update algorithm there are no nodes w and v such that v is

w-close and v /∈ T (w). Doing so efficiently makes the update

algorithm to be technical.

We next describe the different steps in the update algorithm.

Remove the edge (x, y) from all relevant heaps. That is,

delete the edge (x, y) from all heaps Hi(y) and Hi(x) it

belongs to for some 0 ≤ i < k−1, namely, delete all pairs of

177



the form (w, (x, y)) from all Hi(y) and all pairs of the form

(w, (y, x)) from all Hi(x) for 0 ≤ i < k − 1. In addition,

delete (x, y) from all heaps Hj(y, w) and Hj(x,w) for some

0 ≤ j < k − 1 and w ∈ Aj , it belongs to.

In a couple of places in our update algorithm, we add and

remove nodes from some tree T (w). This requires updating

the relevant heaps. Instead of repeating the same operations

multiple times, we define here once how to update the heaps

when a node joins or leaves a tree T (w).

The following Procedure Update-Heaps-Add(w, v) is

called when a node v is added to T (w). Let w ∈ Ai for some

0 ≤ i < k − 1. Remove all keys (w, (∗, v)) from the heap

Hi(v). For every neighbor u of v such that u /∈ T (w), update

the key (w, (v, u)) in Hi(u) with the value d̂(w, v)+ω(v, u).

If u ∈ T (w), then add the key (v, u) to the heap Hi(v, w)

with value d̂(w, v) + ω(v, u) and the key (u, v) to the heap

Hi(u,w) with value d̂(w, u) + ω(v, u).

The following Procedure Update-Heaps-Remove(w, v) is

called when a node v is removed from T (w). Let i be the

index such that w ∈ Ai. Iterate over all neighbors u of v

such that u ∈ T (w) and add (w, (u, v)) to Hi(v) with value

d̂(w, u) + ω(u, v). Moreover, remove all instances (w, (v, z))

from Hi(z) for some z /∈ T (w). For every neighbor u of v

such that u ∈ T (w) remove the edge (v, u) from Hi(u,w).

The algorithm updates the trees T (w) for w ∈ Ai from

i = k − 1 to 0. For i = k − 1, the algorithm simply deletes

the edge from all MES trees T (w) (which contain both x and

y) for w ∈ Ak−1 by invoking the delete operation of MES
(while maintaining the property that only nodes at distance at

most (1 + 2ε)k · d from w stay in T (w)).

Assume the algorithm updated all trees T (w) for w ∈ Aj

for every j > i and consider Ai. Note that for every w ∈ Ai

some nodes may need to be added to T (w) (as their distance

to their pivots on previous levels increased) or removed (as

their distance to w increased). The algorithm fixes the trees

of Ai as follows.

It maintains two heaps H1 and H2, both are initially

set to be empty. Let V̂i be the set of vertices v whose

d̃i(v) increased as a result of the current deletion (recall that

d̃i(v) = min{d̂(v, pj(v))− ε(j − i)d | j > i}).
Here we maintain two heaps rather than one, because it

is more convenient to treat differently nodes whose d̃i(v)

increased and nodes whose distance to w in T (w) increased.

This is done to avoid a situation in which we add a node

v from V̂i to a tree T (w) but we add it to a subtree of the

removed edge and only later discover that actually its new

distance in T (w) is larger than d̃i(v) and the node was not

supposed to be added so we just wasted time on adding it to

T (w).

For every v ∈ V̂i add to the heap H1 the minimum of the

heap Hi(v) together with its value.

The heap H2 contains initially the following. Initially for

every w ∈ Ai such that the deleted edge is in T (w), it contains

(w, v) for the node v that lost its edge to its parent in T (w)

with value d̂(w, v).

As long as H1 or H2 are not empty the algorithm extracts

the minimum of the minimums of the two heaps. We treat the

two cases differently.

If the minimum comes from the heap H1: Let (w, (u, v))

be the minimum of H1 with value dmin(v). If v is w-close,

that is if dmin(v) < d̃i(v) do the following: 1. connect

v to T (w) by adding the edge (u, v). 2. Set d̂(w, v) =

max{d̂last(w, v), d̂(w, u) + ω(u, v)}. 3. Invoke Procedure

Update-Heaps-Add(w, v). 4. Add the next minimum of

Hi(v) to H1.

If the minimum is from H2 do the following. Let (w, v)

be the minimum in H2 with value dmin(v). Try to connect v

to w with a single edge such that the total weight is dmin(v).

This is done by looking at the minimum (q, v) from Hj(v, w)

and checking if the value of this minimum is at most dmin(v).

If successful then do the following: 1. Connect v to T (w) by

adding the edge (q, v). 2. If d̂(w, v) < dmin(v) (this means

that this is not the first time (w, v) is extracted from H2 during

the current update and thus its label is increased) then invoke

Procedure Update-Heaps-Add(w, v).

Otherwise (if v cannot be connected to T (w) with distance

dmin(v)) do the following: 1. if dmin(v) + ε2dμ < d̃i(v)

then update the value of v in H2 to be dmin(v) + ε2dμ.

Else (dmin(v) + ε2dμ ≥ d̃i(v)) remove v from the heap. 2.

Update d̂last(w, v) = dmin(v) + ε2dμ. 3. Invoke Procedure

Update-Heaps-Remove(w, v).

This concludes the update algorithm.

Note that if v was added to H2 because the label of its

parent increases or because the edge to its parent is deleted,

and v is reconnected to the tree T (w) without increasing

its label then the algorithm does not invoke Procedures

Update-Heaps-Add and Update-Heaps-Remove, that is, the

time spent on v is O(log n) (to extract the minimum from H2).

This is similar to the ES algorithm where we pay O(deg(v))

only if the distance to v from the root increases. Note also

that when a distance in Gμ increases, it must increase by at

least ε2dμ, as all weights in Gμ are multiples of ε2dμ.

Similarly to the previous section, here we also have the

property that there is no node v that is w-close and v /∈ T (w).

Claim 4.2: After the update algorithm, there is no node v

that is w-close and v /∈ T (w) for some w ∈ Ai and 0 ≤ i <

k − 1.

178



We next bound the stretch of the algorithm. We rely on the

following Lemma that is proved in the full version.

Lemma 4.3: Maintaining MES on a (d̃, ε1, ε2)-emulator E∗

from s has the following properties. For every w ∈ Zi:

d̂(s, w,E∗) ≤ (1+ε1)(1+6ε2)dist(s, w)+ β̃2−8�̃i+1. Where

�̃i = d̃(6/ε2)
i+1 and β̃2 = 8�̃t−2 + d̃, and d̂(s, w,E∗) is the

distance in the MES tree from s invoked on the graph E∗.

It is important to note that we use Lemma 4.3 only in the

base case, that is, to maintain the trees of Ak−1. To maintain

the trees of Ai for i < k−1 we use a modification that allows

us to maintain approximate trees in which nodes might be

added and removed over the course of the algorithm.

In our case our emulator is (dμ, (1 + ε2)
μ, ε2)-emulator.

We have (1 + ε2)
μ(1 + ε2) < 1 + ε/(10 · k). For every w ∈

Zi, let δ̂(s, w) = (1 + ε/(10k))dist(s, w) + β2 − 8�i−1 or

δ̂(s, w) = 0 in case w = s. (recall that �i = dμ(6/ε2)
i+1 and

β2 = 8�t−2 + dμ.)

The next lemma shows that every node v “close” enough to

w for some w ∈ Ai is either in T (w) or has a node z ∈ Aj for

j > i such that v ∈ T (z) and the distance d̂(z, v) is “small”

enough. The proof of this lemma is quite technical and relies

heavily on the properties of the emulator.

Lemma 4.4: Consider nodes v ∈ V and w ∈ Ai for some

0 ≤ i < k − 1 such that δ̂(w, v) < (1 + 2ε)(i + 1)d then 1.

either v ∈ T (w) and d̂(w, v) ≤ δ̂(w, v) or

2. v /∈ T (w) and there exists a node z ∈ Aj for j > i such

that v ∈ T (z), d̂(v, z) ≤ δ̂(w, v) + ε(j − i)d.

In addition, for every v and w ∈ Ai for some 0 ≤ i ≤ k−1

we have, d̂last(w, v) ≤ δ̂(w, v).

Proof:

First, we note that the claim initially (before any update)

holds. The proof is similar to the analysis in the previous sec-

tion as MES and ES operate the same before any update. We

therefore can show that initially we have d̂(w, v) = dist(w, v)
for v ∈ T (w) and the analysis is similar to the previous

section.

Assume the claim holds up until the last update and consider

a deletion of an edge e. The proof is by induction on i from

k − 1 to 0. For i = k − 1, the claim follows by Lemma 4.3.

Assume correctness for j > i and consider w ∈ Ai. We

use again induction to prove correctness for every v ∈ V . The

induction is on δ̂(w, v).

For δ̂(w, v) = 0, that is v = w the claim is clear . Assume

correctness for every v′ such that δ̂(w, v′) < δ̂(w, v) and

consider v such that δ̂(w, v) < (1 + 2ε)(i + 1)d. Let i′ be

the index such that v ∈ Zi′ . Let z′ be the node that covers v.

We consider two cases: (a) v �= z′ and (b) v = z′.

Assume the first case (a), that is, v �= z′. Note that, z′ ∈ Zj′

for some j′ > i′. Note also that, dist(v, z′) ≤ ω(v, z′, Gμ) ≤
3dμ(6/ε2))

j′ = 3�j′−1. We get,

δ̂(w, z′) =

(1 + ε/(10k))dist(w, z′) + β2 − 8�j′−1

≤ (1 + ε/(10k))(dist(w, v) + dist(v, z′)) + β2 − 8�j′−1

≤ (1 + ε/(10k))(dist(w, v) + 3�j′−1) + β2 − 8�j′−1

< (1 + ε/(10k))dist(w, v) + 6�j′−1 + β2 − 8�j′−1

≤ (1 + ε/(10k))dist(w, v) + β2 − 2�j′−1

≤ (1 + ε/(10k))dist(w, v) + β2 − 8�i′−1

= δ̂(w, v),

where the forth inequality follows for every (1 + ε/(10k)) <

2 and the last inequality follows for every small enough ε2
(ε2 < 4).

We get that δ̂(w, z′) < δ̂(w, v), we can therefore use

induction hypothesis on z′. By induction hypothesis on z′,
we have that either (1) z′ ∈ T (w) and d̂(w, z′) ≤ δ̂(w, z′) or

(2) z′ /∈ T (w) and there exists a node z ∈ Aj for j > i such

that z′ ∈ T (z), d̂(z, z′) ≤ δ̂(w, z′) + ε(j − i)d.

Assume first that (1) happens, that is, z′ ∈ T (w) and

d̂(w, z′) ≤ δ̂(u, z′). By straight forward calculation we can

show that d̂(w, z′)+ω(z′, v) ≤ δ̂(w, z′)+ω(z′, v) ≤ δ̂(w, v).

In addition, before iteration i of the update algorithm, we

have by induction hypothesis d̂last(w, v) ≤ δ̂(w, v). We need

to show that if the algorithm updates d̂last(w, v), then we still

have d̂last(w, v) ≤ δ̂(w, v).

By construction, the algorithm increases d̂last(w, v) only if

the following two conditions hold: 1. d̂last(w, v) < d̃i(v).

2. There is no node u that is already in T (w) at the

time d̂last(w, v) is increased such that d̂(w, u) + ω(u, v) ≤
d̂last(w, v).

Both conditions are straight forward by construction. Note

that if the algorithm increases d̂last(w, v) to δ̂(w, v) then at

that time z′ was already connected to T (w). To see this, recall

that we take the minimum over both heaps H1 and H2 and

as d̂(w, z′) < δ̂(w, v), the value d̂(w, z′) should have been

considered before the value δ̂(w, v). Hence, by the second

condition the algorithm does not increase d̂last(w, v) to be

more than δ̂(w, v).

If (2) happens, that is, z′ /∈ T (w) and there exists a node

z ∈ Aj for j > i such that z′ ∈ T (z), d̂(z, z′) ≤ δ̂(w, z′) +
ε(j−i)d, then we have the following by again straight forward

179



calculation.

d̂(z, z′) + ω(z′, v) ≤ δ̂(w, z′) + ε(j − i)d+ ω(z′, v)

≤ (1 + ε/(10k))dist(w, z′) + β2 − 8�j′−1 + ε(j − i)d+

ω(z′, v)

≤ (1 + ε/(10k))(dist(w, v) + dist(v, z′)) + β2 − 8�j′−1 +

ε(j − i)d+ ω(z′, v)

≤ (1 + ε/(10k))(dist(w, v) + 3�j′−1) + β2 − 8�j′−1 +

ε(j − i)d+ 3�j′−1

< (1 + ε/(10k))dist(w, v) + 4�j′−1 + β2 − 8�j′−1 +

ε(j − i)d+ 3�j′−1

= (1 + ε/(10k))dist(w, v) + β2 − �j′−1 + ε(j − i)d

< (1 + ε/(10k))dist(w, v) + β2 − 8�i′−1 + ε(j − i)d

= δ̂(w, v) + ε(j − i)d

Hence, by construction either v ∈ T (z) and the claim

follows or there exists y ∈ Ar for r > j such that v ∈ T (y)

and d̂(y, v) ≤ δ̂(w, v)+ε(r− i)d and again the claim follows.

Notice that in any case we have d̃i(v) ≤ δ̂(w, v). Hence, the

algorithm will not increase d̂last(w, v) above δ̂(w, v) and in

addition, if v ∈ T (w) then d̂(w, v) ≤ δ̂(w, v).

Finally, we are left with case (b), that is, where v = z′, that

is v covers v.

Recall that Gμ has edges from v to all nodes at distance at

most �dμ(6/ε2)i′+1/2� from it.

Let P (v, w) be the shortest path from v to w in G. If v

and w are connected in Gμ by a single edge, then the claim

follows by construction.

Otherwise, let q be the node at distance �dμ(6/ε2)i′+1/2�
from v in P (v, w).

By induction hypothesis we can show the claim is true for

q. Using similar arguments as above we can also show that

the claim is true for v.

The next lemma bounds the stretch.

Lemma 4.5: Consider nodes s and t. If dist(s, t) ≤ d then

the distance returned by the query algorithm is at most (2(1+

2ε)k − 1)d.

Proof: Consider two nodes s and t whose distance is at most d.

To prove the claim, notice that we only need to prove that there

is an index i such that either 1. s ∈ T (pi(t)) and δ̂(t, pi(t)) ≤
i ·d+2iεd or 2. t ∈ T (pi(s)) and δ̂(s, pi(s)) ≤ i ·d+2iεd. To

see this, recall that the depth of all trees is at most (1+2ε)kd

and that i ≤ k − 1.

Consider the maximal index i such that either δ̂(s, pi(s)) ≤
i · d + 2iεd or δ̂(t, pi(t)) ≤ i · d + 2iεd. (note that there

is such an index as δ̂(s, p0(s)) = δ̂(s, s) = 0 as all nodes

belong to A0). Assume w.l.o.g. that for this index i, we have

δ̂(s, pi(s)) ≤ i ·d+2iεd (rather than δ̂(t, pi(t)) ≤ i ·d+2iεd).

We claim that t ∈ T (pi(s)), which implies the lemma. Note

that

δ̂(t, pi(s)) = (1 + ε/(10k))dist(t, pi(s)) + β2 − 8�̃i+1

≤ (1 + ε/(10k))(dist(s, pi(s)) + dist(s, t)) + β2 − 8�̃i+1

≤ δ̂(s, pi(s)) + (1 + ε/(10k))d

≤ i · d+ 2iεd+ (1 + ε/(10k))d

≤ (1 + 2ε)(i+ 1) · d.

By Lemma 4.4 we have either (1) t ∈ T (pi(s)) or

(2) t /∈ T (pi(s)) and there exists a node z ∈ Aj for j > i such

that t ∈ T (z), d̂(t, z) ≤ δ̂(t, pi(s)) + ε(j − i)d. However, we

claim that (2) contradicts the maximality of i. To see this, note

that if t ∈ T (z) we have d̂(t, z) ≤ δ̂(t, pi(s)) + ε(j − i)d ≤
i · d+2iεd+(1+ ε/(10k))d+ ε(j− i)d = (i+1) · d+ jεd+

iεd+ ε/(10k)d.

Note that, d̂(t, z) ≥ dist(t, z). Hence, we get δ̂(t, pj(t)) ≤
(1 + ε/(10k))((i + 1) · d + jεd + iεd + ε/(10k)d) + β2 ≤
j · d+ 2jεd, with contradiction again to the maximality of i.

Hence, t ∈ T (pi(s)).

The next auxiliary claim will help us bound the number of

trees each node belongs to.

Claim 4.6: Consider a node v ∈ V . Let dist(v,Ai+1) = d′.
For every w′ ∈ Ai such that dist(v, w′) ≥ d′ − εd/2 we have

v /∈ T (w′).

Lemma 4.7: Consider a node v ∈ V . During the entire

running time of the algorithm, the total number of distinct trees

that v ever joined to is O(k2 · log n · n1/k/ε) in expectation.

The next lemma bounds the total running time of the

algorithm.

Lemma 4.8: The expected total running time of the algo-

rithm is Õ(mn1+1/k+o(1)).

REFERENCES

[1] Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully dynamic
all-pairs shortest paths: Breaking the o(n) barrier. In Interna-
tional Workshop on Approximation Algorithms for Combinato-
rial Optimization Problems (APPROX), pages 1–16, 2014.

[2] Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant
Upadhyay. Distance oracles for unweighted graphs: Breaking
the quadratic barrier with constant additive error. In Automata,
Languages and Programming, 35th International Colloquium,
ICALP 2008, pages 609–621, 2008.

[3] Surender Baswana and Telikepalli Kavitha. Faster algorithms
for approximate distance oracles and all-pairs small stretch
paths. In Proceedings of the 47th Annual Symposium on
Foundations of Computer Science, FOCS, pages 591–602, 2006.

180



[4] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar.
Fully dynamic randomized algorithms for graph spanners. ACM
Transactions on Algorithms, 8(4):35, 2012.

[5] Surender Baswana, Utkarsh Lath, and Anuradha S. Mehta.
Single source distance oracle for planar digraphs avoiding a
failed node or link. In Proceedings of the Twenty-third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
223–232, 2012.

[6] Aaron Bernstein. Fully dynamic (2 + epsilon) approximate all-
pairs shortest paths with fast query and close to linear update
time. In Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pages 693–702, 2009.

[7] Aaron Bernstein. Maintaining shortest paths under deletions
in weighted directed graphs. In Proceedings of the Forty-
fifth Annual ACM Symposium on Theory of Computing (STOC),
pages 725–734, 2013.

[8] Aaron Bernstein. Deterministic Partially Dynamic Single
Source Shortest Paths in Weighted Graphs. In 44th Interna-
tional Colloquium on Automata, Languages, and Programming
(ICALP 2017), volume 80, pages 44:1–44:14, 2017.

[9] Aaron Bernstein and Shiri Chechik. Deterministic decremental
single source shortest paths: Beyond the o(mn) bound. In
Proceedings of the Forty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’16, pages 389–397. ACM, 2016.

[10] Aaron Bernstein and Liam Roditty. Improved dynamic al-
gorithms for maintaining approximate shortest paths under
deletions. In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 1355–
1365, 2011.

[11] Aaron Bernstein and Liam Roditty. Improved dynamic al-
gorithms for maintaining approximate shortest paths under
deletions. In Proceedings of the Twenty-second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 1355–
1365, 2011.

[12] Camil Demetrescu and Giuseppe F. Italiano. A new approach
to dynamic all pairs shortest paths. J. ACM, 51(6):968–992,
2004.

[13] Yefim Dinitz. Dinitz’ algorithm: The original version and even’s
version. In Theoretical Computer Science, Essays in Memory
of Shimon Even, pages 218–240, 2006.

[14] Shimon Even and Yossi Shiloach. An on-line edge-deletion
problem. Journal of the ACM, 28(1):1–4, 1981.

[15] M. R. Henzinger and V. King. Fully dynamic biconnectivity
and transitive closure. In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, FOCS, pages
664–, 1995.

[16] Monika Henzinger, Sebastian Krinninger, and Danupon
Nanongkai. Dynamic approximate all-pairs shortest paths:
Breaking the o(mn) barrier and derandomization. In Pro-
ceedings of the 54th Annual Symposium on Foundations of
Computer Science, FOCS, pages 538–547, 2013.

[17] Monika Henzinger, Sebastian Krinninger, and Danupon
Nanongkai. Decremental single-source shortest paths on undi-
rected graphs in near-linear total update time. In Proceedings
of the 55th Annual Symposium on Foundations of Computer
Science, FOCS, pages 146–155, 2014.

[18] Monika Henzinger, Sebastian Krinninger, and Danupon
Nanongkai. Sublinear-time decremental algorithms for single-
source reachability and shortest paths on directed graphs. In
Proceedings of the 46th Annual ACM Symposium on Theory of
Computing (STOC), pages 674–683, 2014.

[19] Monika Henzinger, Sebastian Krinninger, and Danupon
Nanongkai. A subquadratic-time algorithm for decremental
single-source shortest paths. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 1053–1072, 2014.

[20] Monika Henzinger, Sebastian Krinninger, and Danupon
Nanongkai. Improved algorithms for decremental single-source
reachability on directed graphs. In Proceedings of the 42nd
International Colloquium, ICALP, pages 725–736, 2015.

[21] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai,
and Thatchaphol Saranurak. Unifying and strengthening hard-
ness for dynamic problems via the online matrix-vector mul-
tiplication conjecture. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing (STOC),
pages 21–30, 2015.

[22] Valerie King. Fully dynamic algorithms for maintaining all-
pairs shortest paths and transitive closure in digraphs. In
Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, FOCS, pages 81–91, 1999.

[23] Valerie King and Mikkel Thorup. A space saving trick for
directed dynamic transitive closure and shortest path algorithms.
In COCOON, pages 268–277, 2001.

[24] Liam Roditty and Uri Zwick. On dynamic shortest paths
problems. Algorithmica, 61(2):389–401, 2011.

[25] Liam Roditty and Uri Zwick. Dynamic approximate all-
pairs shortest paths in undirected graphs. SIAM J. Comput.,
41(3):670–683, 2012.

[26] Piotr Sankowski. Subquadratic algorithm for dynamic shortest
distances. In International Computing and Combinatorics
Conference (COCOON), pages 461–470, 2005.

[27] Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster
and allowing negative cycles. In SWAT, pages 384–396, 2004.

[28] Mikkel Thorup. Worst-case update times for fully-dynamic
all-pairs shortest paths. In Proceedings of the Thirty-seventh
Annual ACM Symposium on Theory of Computing (STOC),
pages 112–119, 2005.

[29] Mikkel Thorup and Uri Zwick. Approximate distance oracles.
J. ACM, 52(1):1–24, 2005.

[30] Christian Wulff-Nilsen. Approximate distance oracles with
improved preprocessing time. In Proceedings of the Twenty-
third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 202–208, 2012.

181


