
A Faster Isomorphism Test for Graphs of Small Degree

Martin Grohe, Daniel Neuen

RWTH Aachen University
Aachen, Germany

Email: {grohe,neuen}@informatik.rwth-aachen.de

Pascal Schweitzer

TU Kaiserslautern
Kaiserslautern, Germany

Email: schweitzer@cs.uni-kl.de

Abstract—In a recent breakthrough, Babai (STOC 2016)
gave quasipolynomial graph isomorphism test. In this work,
we give an improved isomorphism test for graphs of small
degree: our algorithms runs in time nO((log d)c), where n is
the number of vertices of the input graphs, d is the maximum
degree of the input graphs, and c is an absolute constant.
The best previous isomorphism test for graphs of maximum
degree d due to Babai, Kantor and Luks (FOCS 1983) runs in
time nO(d/ log d).

Keywords-graph isomorphism, bounded degree graphs,
group theory, groups with restricted composition factors

I. INTRODUCTION

Luks’s polynomial time isomorphism test for graphs of

bounded degree [1] is one of the cornerstones of the

algorithmic theory of graph isomorphism. With a slight

improvement given later [2], it tests in time nO(d/ log d)

whether two n-vertex graphs of maximum degree d are

isomorphic. Over the past decades Luks’s algorithm and its

algorithmic framework have been used as a building block

for many isomorphism algorithms (see e.g. [2], [3], [4],

[5], [6], [7], [8]). More importantly, it also forms the basis

for Babai’s recent isomorphism test for general graphs [9],

[10] which runs in quasipolynomial time (i.e., the running

time is bounded by npolylog(n)). Indeed, Babai’s algorithm

follows Luks’s algorithm, but attacks the obstacle cases

for which the recursion performed by Luks’s framework

does not lead to the desired running time. Graphs whose

maximum degree d is at most polylogarithmic in the number

n of vertices are not a critical case for Babai’s algorithm,

because for such graphs no large alternating or symmetric

groups appear as factors of the automorphism group, and

therefore the running time of Babai’s algorithm on the class

of all these graphs is still quasipolynomial. Hence graphs of

polylogarithmic maximum degree form one of the obstacle

cases towards improving Babai’s algorithm. This alone is a

strong motivation for trying to improve Luks’s algorithm. In

view of Babai’s quasipolynomial time algorithm, it is natural

to ask whether there is an npolylog(d)-isomorphism test for

graphs of maximum degree d. In this paper we answer this

question affirmatively.

Theorem I.1. The Graph Isomorphism Problem for graphs
of maximum degree d can be solved in time nO((log d)

c), for

an absolute constant c.

To prove the result we follow the standard route of

considering the String Isomorphism Problem, which is an

abstraction of the graph isomorphism problem that has been

introduced by Luks in order to facilitate a recursive isomor-

phism test based on the structure of the permutation groups

involved. Here a string is simply a mapping x : Ω → Σ,

where the domain Ω and alphabet Σ are just finite sets.

Given two strings x, y : Ω → Σ and a permutation group

G ≤ Sym(Ω) (given by a set of generators), the objective

of the string isomorphism problem is to compute the set

IsoG(x, y) of all G-isomorphisms from x to y, that is, all

permutations g ∈ G mapping x to y. We study the string

isomorphism problem for groups G in the class Γ̂d of

groups all of whose composition factors are isomorphic

to subgroups of Sd, the symmetric group acting on d
points. Luks introduced this class because he observed that,

after fixing a single vertex, the automorphism group of a

connected graph of maximum degree d is in Γ̂d
1. Our main

technical result, Theorem VII.3, states that we can solve

the string isomorphism problem for groups G ∈ Γ̂d in time

npolylog(d), where n = |Ω| is the length of the input strings.

This implies Theorem I.1 (as outlined in Section VIII).

To prove this result, we introduce the new concept of

an almost d-ary sequence of invariant partitions. More

precisely, we exploit for the group G a sequence {Ω} =
B0 � · · · � Bm = {{α} | α ∈ Ω} of G-invariant partitions

Bi of Ω, where Bi−1 � Bi means that Bi refines Bi−1. For

this sequence we require that for all i the induced group of

permutations of the subclasses in Bi of a given class in Bi−1
is isomorphic to a subgroup of the symmetric group Sd or

semi-regular (i.e., only the identity has fixed points). Our

algorithm that exploits such a sequence is heavily based

on techniques introduced by Babai for his quasipolynomial

time isomorphism test. We even use Babai’s algorithm as a

black box in one case. One of our technical contributions

is an adaptation of Babai’s Unaffected Stabilizers Theorem

[10, Theorem 6] to groups constrained by an almost d-

ary sequence of invariant partitions. In [10], the Unaffected

1In [1], the class ̂Γd is denoted by Γd. However, in the more recent
literature Γd typically refers to a larger class of groups [11] (see Subsec-
tion II-B).

89

2018 IEEE 59th Annual Symposium on Foundations of Computer Science

2575-8454/18/$31.00 ©2018 IEEE
DOI 10.1109/FOCS.2018.00018

Stabilizers Theorem lays the groundwork for the group

theoretic algorithms (the Local Certificates routine), and it

plays a similar role here. However, we need a more refined

running time analysis. Based on this we can then adapt the

Local Certificates routine to our setting.

However, not every group in Γ̂d has such an almost d-

ary sequence required by our technique. We remedy this

by changing the operation of the group while preserving

string isomorphisms. The structural and algorithmic results

enabling such a change of operation form the second techni-

cal contribution of our work. For this we employ some heavy

group theoretic results. First, applying the classification of fi-

nite simple groups via the O’Nan Scott Theorem and several

other group theoretic characterizations, we obtain a structure

theorem for primitive permutation groups in Γ̂d showing that

they are either small (of size at most npolylog(d)) or have

a specific structure. More precisely, large primitive groups

in Γ̂d are composed, in a well defined manner, of Johnson

schemes. Second, to construct the almost d-ary sequence of

partitions, we exploit the existence of these Johnson schemes

and introduce subset lattices which are unfolded yielding the

desired group operation.

With Luks’s framework being used as a subroutine in

various other algorithms, one can ask for the impact of

the improved running time in such contexts. As a first,

simple application we obtain an improved isomorphism test

for relational structures (Theorem VIII.3) and hypergraphs

(Corollary VIII.4). A deeper application is a new fixed-

parameter tractable algorithm for graph isomorphism of

graphs parameterized by tree width [12], which substantially

improves the algorithm from [13].

II. PRELIMINARIES

A. Graphs and other structures

A graph is a pair Γ = (V,E) with vertex set V = V (Γ)
and edge relation E = E(Γ). In this paper all graphs are

finite simple, undirected graphs. The neighborhood of v ∈
V (Γ) is denoted N(v). A path of length k is a sequence

v0, . . . , vk of distinct vertices such that vi−1vi ∈ E(Γ) for

all i ∈ [k] (where [k] := {1, . . . , k}). The distance between

two vertices v, w ∈ V (Γ), denoted by dist(v, w), is the

length of the shortest path from v to w.

An isomorphism from a graph Γ1 to another graph Γ2 is

a bijective mapping ϕ : V (Γ1) → V (Γ2) which preserves

the edge relation, that is vw ∈ E(Γ1) if and only if

ϕ(v)ϕ(w) ∈ E(Γ2) for all v, w ∈ V (Γ1). Two graphs Γ1
and Γ2 are isomorphic (Γ1 ∼= Γ2) if there is an isomorphism

from Γ1 to Γ2. An automorphism of a graph Γ is an

isomorphism from Γ to itself. By Aut(Γ) we denote the

group of automorphisms of Γ. The Graph Isomorphism
Problem asks, given two graphs Γ1 and Γ2, whether they

are isomorphic.

More generally, a t-ary relational structure is a tuple

A = (D,R1, . . . , Rk) with domain D and t-ary relations

Ri ⊆ Dt for i ∈ [k]. An isomorphism from a struc-

ture A1 = (D1, R1, . . . , Rk) to another structure A2 =
(D2, S1, . . . , Sk) is a bijective mapping ϕ : D1 → D2 such

that (v1, . . . , vt) ∈ Ri if and only if (ϕ(v1), . . . , ϕ(vt)) ∈ Si
for all v1, . . . , vt ∈ D1 and i ∈ [k]. As before, Aut(A)
denotes the automorphism group of A.

Let B1,B2 be two partitions of the same set Ω. We

say B1 refines B2, denoted by B1 � B2, if for every

B1 ∈ B1 there is some B2 ∈ B2 such that B1 ⊆ B2.

If additionally B1 and B2 are distinct we say B1 strictly
refines B2 (B1 ≺ B2). The index of B1 in B2 is

|B2 : B1| = maxB2∈B2 |{B1 ∈ B1 | B1 ⊆ B2}|. A

partition B (of the set Ω) is an equipartition if all elements

B ∈ B have the same size. For S ⊆ Ω we define the induced
partition B[S] = {B ∩ S | B ∈ B such that B ∩ S �= ∅}.
Note that B[S] forms a partition of the set S.

For a set M and a natural number t ≤ |M | we denote by(
M
t

)
the set of all t-element subsets of M , that is,

(
M
t

)
=

{X ⊆ M | |X| = t}. Note that the number of elements in(
M
t

)
is exactly

(|M |
t

)
. Moreover,

(
M
≤t

)
denotes the set of all

subsets of M of cardinality at most t.

B. Group Theory

In this section we introduce the group theoretic notions

required in this work. For a general background on group

theory we refer to [14] whereas background on permutation

groups can be found in [15].

A permutation group acting on a set Ω is a subgroup G ≤
Sym(Ω) of the symmetric group. The size of the permutation

domain Ω is called the degree of G and, throughout this

work, is denoted by n = |Ω|. If Ω = [n] then we also

write Sn instead of Sym(Ω). For g ∈ G and α ∈ Ω we

denote by αg the image of α under the permutation g. The

set αG = {αg | g ∈ G} is the orbit of α. The group G is

transitive if αG = Ω for some (and therefore every) α ∈ Ω.

For α ∈ Ω the group Gα = {g ∈ G | αg = α} ≤ G
is the stabilizer of α in G. For Δ ⊆ Ω and g ∈ G let

Δg = {αg | α ∈ Δ}. The pointwise stabilizer of Δ is the

subgroup G(Δ) = {g ∈ G | ∀α ∈ Δ: αg = α}. The setwise
stabilizer of Δ is the subgroup GΔ = {g ∈ G | Δg = Δ}.
Observe that G(Δ) ≤ GΔ.

Let G ≤ Sym(Ω) be a transitive group. A block of G is a

nonempty subset B ⊆ Ω such that Bg = B or Bg ∩B = ∅
for all g ∈ G. The trivial blocks are Ω and the singletons

{α} for α ∈ Ω. The group G is said to be primitive if there

are no non-trivial blocks. If B ⊆ Ω is a block of G then

B = {Bg | g ∈ G} forms a block system of G. The group

G(B) = {g ∈ G | ∀B ∈ B : Bg = B} denotes the subgroup

stabilizing each block B ∈ B setwise. Observe that G(B) is

a normal subgroup of G. We denote by GB ≤ Sym(B) the

natural action of G on the block system B. More generally,

if A is a set of objects on which G acts naturally, we denote

by GA ≤ Sym(A) the action of G on the set A. A block

system B is minimal if there is no non-trivial block system

90

B′ such that B ≺ B′. A block system B is minimal if and

only if GB is primitive.
Let G ≤ Sym(Ω) and G′ ≤ Sym(Ω′). A homomorphism

is a mapping ϕ : G → G′ such that ϕ(g)ϕ(h) = ϕ(gh) for

all g, h ∈ G. For g ∈ G we denote by gϕ the ϕ-image of g.

Similarly, for H ≤ G we denote by Hϕ the ϕ-image of H
(note that Hϕ is a subgroup of G′).

A permutational isomorphism from G to G′ is a bijective

mapping f : Ω → Ω′ such that G′ = {f−1gf | g ∈ G}
where f−1gf : Ω′ → Ω′ : f(α) �→ f(αg). If there is a

permutational isomorphism from G to G′, we call G and

G′ permutationally equivalent.
In this work we shall be interested in a particular sub-

class of permutation groups, namely groups with restricted

composition factors. Let G be a group. A normal series is

a sequence of subgroups G = G0 � G1 � · · · � Gk = {1}.
The length of the series is k and the groups Gi−1/Gi are

the factor groups of the series, i ∈ [k]. A composition series
is a strictly decreasing normal series of maximal length. For

every finite group G all composition series have the same

family of factor groups considered as a multi-set (cf. [14]).

A composition factor of a finite group G is a factor group

of a composition series of G.

Definition II.1. For d ≥ 2 let Γ̂d denote the class of

all groups G for which every composition factor of G is

isomorphic to a subgroup of Sd.

We want to stress the fact that there are two similar classes

of groups that have been used in the literature both typically

denoted by Γd. One of these is the class we define as Γ̂d
introduced by Luks [1] while the other one used in [11] in

particular allows composition factors that are simple groups

of Lie type of bounded dimension.

Lemma II.2 (Luks [1]). Let G ∈ Γ̂d. Then
1) H ∈ Γ̂d for every subgroup H ≤ G, and
2) Gϕ ∈ Γ̂d for every homomorphism ϕ : G→ H .

C. String Isomorphism and Luks’s algorithm
In the following we give an outline of Luks’s algorithm

[1]. Our description of the algorithm as well as the notation

mainly follows [10].
Let x, y : Ω → Σ be two strings over a finite alphabet Σ

and let G ≤ Sym(Ω) be a group. For σ ∈ Sym(Ω) the string

xσ is defined by

xσ(α) = x(ασ
−1
)

for all α ∈ Ω. A permutation σ ∈ Sym(Ω) is a G-
isomorphism from x to y if σ ∈ G and xσ = y. The String
Isomorphism Problem asks, given x, y : Ω→ Σ and a group

G ≤ Sym(Ω) given as a set of generators, whether there is

a G-isomorphism from x to y. The set of G-isomorphisms

is denoted by IsoG(x, y) := {g ∈ G | xg = y}.
More generally, for K ⊆ Sym(Ω) and W ⊆ Ω we define

IsoWK (x, y) = {g ∈ K | ∀α ∈W : x(α) = y(αg)}. (1)

In this work K = Gg will always be a coset where G ≤
Sym(Ω) and g ∈ Sym(Ω) and the set W will be G-invariant.

In this case IsoWK (x, y) is either empty or a coset of the group

AutWG (x) := IsoWG (x, x), that is, IsoWK (x, y) = AutWG (x)σ
where σ ∈ IsoWK (x, y) is arbitrary. Hence, the set IsoWK (x, y)
can be represented by a generating set for AutWG (x) and an

element σ. Moreover, using the identity

IsoWGg(x, y) = IsoWG (x, y
g−1)g, (2)

it is actually possible to restrict ourselves to the case where

K is a group.

We now describe the two main recursive steps used in

Luks’s algorithm [1]. First suppose G ≤ Sym(Ω) is not

transitive and let Ω1, . . . ,Ωs be the orbits of G. Then the

strings are processed orbit by orbit.

1: K := G
2: for all i = 1 to s do
3: K := IsoΩi

K (x, y)
4: end for
Note that the set IsoΩi

K (x, y) can be computed making one

call to String Isomorphism over domain size ni = |Ωi|.
Indeed, using Equation (2), it can be assumed that K ≤
Sym(Ω) is a group and Ωi is K-invariant. Then

IsoΩi

K (x, y) =
{
k ∈ K | kΩi ∈ IsoKΩi (x

Ωi , yΩi)
}
.

Here, xΩi (respectively yΩi) denotes the restriction of the

string x (respectively y) to the set Ωi. Having computed the

set IsoKΩi (x
Ωi , yΩi) making one recursive call to String Iso-

morphism over domain size ni = |Ωi|, the set IsoΩi

K (x, y) can

be computed in polynomial time. So overall the algorithm

needs to make s recursive calls to String Isomorphism over

domain sizes n1, . . . , ns.

For the second type of recursion let H ≤ G be a subgroup

and let T = {g1, . . . , gt} be a transversal for H . Then

IsoG(x, y) =
⋃
i∈[t]

IsoHgi(x, y). (3)

In Luks’s algorithm this type of recursion is applied when

G is a transitive group, B is a minimal block system and

H = G(B). Observe that GB is a primitive group and t =
|GB|. Also note that H is not transitive. Indeed, each orbit

of H has size n/b where b = |B|. Hence, combining both

types of recursion the computation of IsoG(x, y) is reduced

to t · b instances of String Isomorphism over domain size

n/b. We refer to this as the standard Luks reduction.

Now suppose G ∈ Γ̂d. The crucial step to analyze

Luks’s algorithm is to determine the size of primitive groups

occurring in the recursion.

Theorem II.3 ([11]). There exists a function f such that
every primitive Γ̂d-group G ≤ Sym(Ω) has order |G| ≤
nf(d).

91

Indeed, the function f can be chosen to be linear in d
(cf. [16]). As a result, Luks’s algorithm runs in time nO(d)

for all groups G ∈ Γ̂d.

D. Recursion

For the purpose of later analyzing our recursion, we record

some bounds.

Lemma II.4. Let k ∈ N and t : N→ N be a function such
that t(1) = 1. Suppose that for every n ∈ N there are natural
numbers n1, . . . , n� for which one of the following holds:

1) t(n) ≤ ∑�
i=1 t(ni) where

∑�
i=1 ni ≤ 2kn and ni ≤

n/2 for all i ∈ [�], or
2) t(n) ≤∑�

i=1 t(ni) where
∑�
i=1 ni ≤ n and � ≥ 2.

Then t(n) ≤ nk+1.

Lemma II.5. Let m, k ≥ 1 and suppose k ≤ m
2 . Then(

m

k

)logm

≥ mk. (4)

Proof: It holds that(
m

k

)logm

≥
(m
k

)k logm
≥ 2k logm = mk.

III. THE STRUCTURE OF PRIMITIVE GROUPS IN Γ̂d

We give a structure theorem for primitive Γ̂d-groups

saying that they are either small or essentially composed

of Johnson groups in a well defined manner.

For t ≤ m we denote by A
(t)
m the action of the alternating

group Am on the set of t-element subsets of [m]. Also, for

G ≤ Sym(Ω) and B,B′ two G-invariant partitions such that

B ≺ B′, we denote by G
B[B]
B the natural induced action of

GB on the set B[B] for all B ∈ B′. Finally, recall that the

socle of G, denoted by Soc(G), is the group generated by

all minimal normal subgroups of G.

Theorem III.1. Let G ≤ Sym(Ω) be a primitive Γ̂d-group.
Then one of the following holds:

1) |G| = nO(log d), or
2) for the normal subgroup N = Soc(G) ≤ G there is

a sequence of partitions {Ω} = B1 � · · · � Bk =
{{α} | α ∈ Ω} such that the following holds:

a) |G : N | ≤ n1+log d,
b) Bi is N -invariant for every i ∈ [k], and
c) there are m ≤ d and t ≤ m

2 with m > 4 log s
where s =

(
m
t

)
such that for all i ∈ [k − 1] and

B ∈ Bi the group NBi+1[B]
B is permutationally

equivalent to A(t)m .
Moreover, there is a polynomial-time algorithm that deter-
mines one of the options that is satisfied and in case of the
second option computes N and the partitions B1, . . . ,Bk.

The proof is based on the well-known O’Nan-Scott The-

orem saying a primitive group G has to be one of five types.

For each of those types we separately analyze the size of

primitive groups of this type and give a precise description of

the large groups. The proofs for the different types are based

on several further group theoretic statements [17], [18], [19],

[20], [21], [22], [23], [24] several of which are based on the

classification of finite simple groups.

Remark III.2. Let Γd denote the family of groups G with

the property that G has no alternating composition factors

of degree greater than d and no classical composition factors

of rank greater than d. (There is no restriction on the

cyclic, exceptional, and sporadic composition factors of G.)

While the class Γ̂d considered in this paper follows the

original definition of Luks [1], most of the recent literature

is concerned with the more general class of groups Γd [11],

[21]. The reason is that many results that can be proved for

the class Γ̂d indeed carry over to the more general class of

groups Γd. We want to stress the fact that this is not the case

for the theorem presented in this section. Indeed, consider

the affine general linear group G = AGL(d, p) of dimension

d (with its natural action on the corresponding vector space).

Then G is a primitive group of affine type and |G| = nΩ(d)

where n = pd is the size of the vector space. The group G
is contained in the class Γd, but it is not contained in Γ̂d.

IV. ALMOST d-ARY BLOCK SYSTEM SEQUENCES

In this section we describe a reduction from the String

Isomorphism Problem for Γ̂d-groups to a more restricted

version of this problem. In this restricted version, the group

is equipped with a sequence of block systems satisfying a

particular property defined as follows. (Recall that a permu-

tation group G ≤ Sym(Ω) is semi-regular if Gα = {1} for

every α ∈ Ω. Also remember that, for G-invariant partitions

B ≺ B′ and B ∈ B′, we denote by G
B[B]
B the natural

induced action of GB on the set B[B].)

Definition IV.1. Let G ≤ Sym(Ω) be a permutation group.

A G-invariant sequence of partitions {Ω} = B0 � · · · �
Bk = {{α} | α ∈ Ω} is called almost d-ary if for every

i ∈ [k] and B ∈ Bi−1 it holds that

1) G
Bi[B]
B is semi-regular, or

2) |Bi[B]| ≤ d.

A simple, but crucial observation is that the property, that

such a sequence exists, is closed under taking subgroups

and under restricting the group to an invariant subset of the

domain.

Observation IV.2. Let G ≤ Sym(Ω) be a group and
suppose there is an almost d-ary sequence of G-invariant
partitions {Ω} = B0 � · · · � Bm = {{α} | α ∈ Ω}.
Moreover, let H ≤ G. Then B0 � · · · � Bm also
forms an almost d-ary sequence of H-invariant partitions.
Additionally, for an H-invariant subset Δ ⊆ Ω it holds that

92

B0[Δ] � · · · � Bm[Δ] forms an almost d-ary sequence of
HΔ-invariant partitions.

The goal of this section is to describe a reduction that,

given an instance of String Isomorphism for Γ̂d-groups,

computes a new equivalent instance, in which the permuta-

tion group is equipped with an almost d-ary G-invariant se-

quence of partitions. This reduction runs in time npolylog(d).
We shall then see in subsequent sections that the String

Isomorphism Problem for groups equipped with such a

sequence can be solved in time npolylog(d).

High Level Idea.: The central idea for the reduction

is to change the action of the permutation group G. Let

us first illustrate this on a high level for the special case

that G is a primitive group. Using the characterization of

primitive Γ̂d-groups given in the previous section we have

to distinguish two cases. First suppose that |G| ≤ nc1 log d+c2

for some appropriate absolute constants c1, c2. Now define

Ω∗ = G× Ω. Then g ∈ G acts on Ω∗ via

(h, α)g = (hg, αg).

Let G∗ ≤ Sym(Ω∗) be the permutation group obtained

from the action of G on the set Ω∗. It is easy to check

that G∗ is semi-regular. Also note that |Ω∗| ≤ nO(log d). Of

course we also need to transform the strings. For a string

x : Ω→ Σ define x∗ : Ω∗ → Σ: (h, α) �→ x(α). Note that no

information is lost in this transformation. Indeed, it can be

verified that two strings x, y are G-isomorphic if and only

if x∗ is G∗-isomorphic to y∗. So this gives us the desired

reduction.

Next, let us consider the more interesting case that G
satisfies Property 2 of Theorem III.1. Let N = Soc(G).
Then, in a first step, we consider the set Ω∗ = G/N × Ω.

An element g ∈ G acts on Ω∗ via

(Nh,α)g = (Nhg, αg).

Let G∗ = GΩ∗ ≤ Sym(Ω∗) denote the permutation group

corresponding to the action of G on Ω∗. Now the crucial

observation is that B = {{(Nh,α) | α ∈ Ω} | h ∈ G}
is a G∗-invariant partition. For every B ∈ B, it holds that

(G∗)BB is permutationally equivalent to N , and the group

(G∗)B is regular. Note that again |Ω∗| ≤ nO(log d). Also,

the strings can be transformed in the same way as before.

Hence, it remains to consider only the group N .

Finally, for an intuition on how the group N is trans-

formed suppose for simplicity that N = A
(t)
m . The group Am

has another action closely related to the action A
(t)
m on the

t-element subsets of [m], namely the action on the set [m]〈t〉

of all t-tuples with distinct entries. A crucial difference

between these actions is that the action on the tuples is not

primitive. Indeed, fixing more and more coordinates, we get

the following sequence of partitions. For i = 0, . . . , t let

B∗i =
{{(a1, . . . , at) ∈ [m]〈t〉 | ∀j ≤ i : aj = bj} |

(b1, . . . , bi) ∈ [m]〈i〉
}
.

Let N∗ be the action of N on the set of ordered t-tuples

with distinct entries. For every i ∈ [t] the partition B∗i
is N∗-invariant and for every B ∈ B∗i−1 it holds that

|B∗i [B]| ≤ m ≤ d. Moreover, with every element ā ∈ [m]〈t〉
we can associate the underlying unordered set of elements.

This way, we can also transform the strings in a way similar

to before. Also note that the set [m]〈t〉 is only slightly larger

than
(
m
t

)
(cf. Lemma II.5).

Theorem IV.3. Let G ≤ Sym(Ω) be a transitive Γ̂d-group
and let x, y : Ω→ Σ be two strings. Then there is a set Ω∗, a
Γ̂d-group G∗ ≤ Sym(Ω∗), two strings x∗, y∗ : Ω∗ → Σ and
a G∗-invariant almost d-ary sequence of partitions {Ω∗} =
B∗0 � · · · � B∗k = {{α∗} | α∗ ∈ Ω∗} of the set Ω∗ such
that the following holds:

1) |Ω∗| ≤ n(c1 log d+c2+1) log d, and
2) x ∼=G y if and only if x∗ ∼=G∗ y∗.

Moreover, one can compute all objects in time polynomial
in the size of Ω∗.

While the proof follows the high level idea presented

above there are several intricacies that need to be considered

when dealing with non-primitive groups.

For the proof we consider a maximal sequence of G-

invariant partitions {Ω} = B0 � · · · � Bk = {{α} |
α ∈ Ω} and change the action of the group along this

sequence. A main additional challenge comes from the fact

that, starting from the second partition in the sequence, one

has to change the action in several blocks in parallel in a

consistent manner. For example, suppose |B1| ≤ d and thus,

the action on the block system B1 remains unchanged. In

the next iteration we wish to modify the actions G
B2[B]
B

for every B ∈ B1. To achieve this, we need to change the

actions of all these groups at the same time in a consistent

manner to obtain an action of the complete group G. In

the proof, we actually split this task into two separate steps

similar to the description given above. First, we introduce the

semi-regular actions and reduce to the case where we only

have to deal with the Johnson groups A
(t)
m . Then, in a second

step, we deal with the Johnson groups separately using

tree unfoldings of graphs composed of subset lattices (that

correspond to the Johnson schemes) to obtain the desired

group action and the sequence of partitions.

More formally, in the first step we proof the following

theorem.

Theorem IV.4. Let G ≤ Sym(Ω) be a transitive Γ̂d-group
and let x, y : Ω → Σ be two strings. Then there is a set
Ω∗, a transitive Γ̂d-group G∗ ≤ Sym(Ω∗), two strings
x∗, y∗ : Ω∗ → Σ and a sequence of G∗-invariant partitions

93

{Ω∗} = B∗0 � · · · � B∗k = {{α∗} | α∗ ∈ Ω∗} of the set Ω∗

such that the following holds:

1) |Ω∗| ≤ nc1 log d+c2+1 for some absolute constants
c1, c2 where n = |Ω|,

2) x ∼=G y if and only if x∗ ∼=G∗ y∗, and
3) for every i ∈ [k] and B ∈ B∗i−1 it holds that

a) (G∗)B
∗
i [B]

B is semi-regular, or
b) (G∗)B

∗
i [B]

B is permutationally equivalent to A(t)m
for some m ≤ d and t ≤ m

2 where m > 4 log s
for s =

(
m
t

)
.

Moreover, one can compute all objects in time polynomial
in the size of Ω∗.

With this theorem we can prove the main reduction

theorem by elimating the Johnson groups. In the following

we outline the proof of this second step by describing the

construction of the new instance more formally.

Proof Idea of Theorem IV.3: By Theorem IV.4 we can

assume that there is a sequence of G-invariant partitions

{Ω} = B0 � · · · � B� = {{α} | α ∈ Ω} such that for

every i ∈ [�] and B ∈ Bi−1 it holds that

(A) G
Bi[B]
B is semi-regular, or

(B) G
Bi[B]
B is permutationally equivalent to A

(t)
m for some

m ≤ d and t ≤ m
2 where m > 4 log s for s =

(
m
t

)
.

(Actually, using Theorem IV.4, the above condition can only

be achieved by increasing the size of the set Ω as described

in Theorem IV.4, Property 1. We argue that under the above

assumption the set Ω∗ constructed in this proof has size at

most nlog d which in combination with Theorem IV.4 results

in the desired bound given in 1.)

In order to get almost d-arity, we need to worry about

those blocks that satisfy item (B). Let

I =
{
i ∈ [�] | ∃B ∈ Bi−1 : G

Bi[B]
B is

permutationally equivalent to A(ti)mi

}
.

Note that for B,B′ ∈ Bi−1 the groups G
Bi[B]
B and G

Bi[B
′]

B′

are permutationally equivalent. So the existential quantifier

in the definition of the set I can also be replaced by a

universal quantifier.

For i ∈ I and B ∈ Bi−1 let ρi,B : Bi[B] →
(
[mi]
ti

)
be

a permutational isomorphism from G
Bi[B]
B to A

(ti)
mi . Such a

ρi,B can be computed in polynomial time (see e.g. [25]).

Let Γ = (V (Γ), E(Γ)) be the graph with

V (Γ) =
⋃

i∈{0,...,�}
Bi

∪
{
(i, B,X) | i ∈ I, B ∈ Bi−1, X ∈

(
[mi]

≤ ti

)}

and

{(i, B,X), (i′, B′, X ′)} ∈ E(Γ)
:⇔ i = i′ ∧B = B′ ∧X ⊆ X ′ ∧ |X ′ \X| = 1,

{B, (i, B′, X)} ∈ E(Γ)
:⇔ B = B′ ∧X = ∅

or |X| = ti ∧B ∈ Bi ∧B ⊆ B′ ∧ ρi,B′(B) = X,

{B,B′} ∈ E(Γ)
:⇔ ∃i ∈ [�] \ I : B ∈ Bi−1 ∧B′ ∈ Bi ∧B′ ⊆ B.

Let v0 = Ω be the root of Γ (note that Ω ∈ B0). A branch of
(Γ, v0) is a path (v0, v1, . . . , vp) such that dist(v0, vi) = i
for all i ∈ [p]. A maximal branch of (Γ, v0) is a branch

of maximal length. Observe that for every maximal branch

(v0, v1, . . . , vp) it holds that vp = {α} for some α ∈ Ω. Let

M be the set of maximal branches of (Γ, v0).

Claim 1. |M | ≤ nlog d.

Proof. We can view the sequence of partitions Bi as a tree

of height �. Each leaf of this tree corresponds to an element

α ∈ Ω.

The graph Γ is obtained from the partition tree by

squeezing subset-lattices of the (≤ ti)-element subsets of

[mi] between some internal node of the tree and its
(
mi

ti

)
children. Counting the number of branches in Γ amounts to

counting the number of leaves in the tree unfolding of Γ.

To obtain the tree unfolding, we replace each of the subset

lattices of size
(
mi

ti

)
by a tree of size mti

i . For a fixed subset

lattice every element X ⊆ [mi] of size ti corresponds to

mti
i /

(
mi

ti

)
many tuples in the tree unfolding. Hence,

|M | ≤ n ·
∏
i∈I

(
mti
i /

(
mi

ti

))

≤ n ·
∏
i∈I

(
mi

ti

)log d−1
by Lemma II.5

≤ n ·
(∏
i∈I

(
mi

ti

))log d−1

≤ n ·
(∏
i∈I
|Bi−1 : Bi|

)log d−1

≤ nlog d.

�

For every maximal branch v̄ = (v0, . . . , vp) ∈ M define

σ(v̄) = α for the unique α ∈ Ω such that vp = {α}. Now let

Ω∗ = {(α, v̄) | α ∈ Ω, v̄ ∈ M,α = σ(v̄)}. Clearly, |Ω∗| =
|M | ≤ nlog d by Claim 1. Let x∗ : Ω∗ → Σ: (α, v̄) �→ x(α)
and y∗ : Ω∗ → Σ: (α, v̄) �→ y(α).

For g ∈ G define gΓ ∈ Sym(V (Γ)) to be the permutation

defined by

B(g
Γ) = Bg

94

and

(i, B,X)(g
Γ) = (i, Bg, X ′)

where X ′ is defined as follows. Let gBi[B] : Bi[B] →
Bi[B

g] : B′ �→ (B′)g and define

f :

(
[mi]

ti

)
→

(
[mi]

ti

)
: Y �→ Y ρ

−1
i,B · gBi[B] · ρi,Bg

The bijection f ∈ Sym(
(
[mi]
ti

)
) is induced by a unique

permutation π ∈ Smi . Now define X ′ = Xπ .

We can show that for every g ∈ G we have gΓ ∈
Aut(Γ, v0). With this we can define an action of the group

G on the set of maximal branches and thus, on the set Ω∗.
For g ∈ G define g∗ ∈ Sym(Ω∗) via

(α, (v0, . . . , vp))
g∗ =

(
αg,

(
v
(gΓ)
0 , . . . , v

(gΓ)
p

))
and let G∗ = {g∗ | g ∈ G}.

Form this point it is not difficult to prove that the

constructed instance of the String Isomorphism Problem

satisfies the desired properties. In particular, the almost d-

ary sequence of partitions is naturally defined via the set

of maximal branches coming from the tree unfolding of the

graph Γ.

The previous theorem states that there is an npolylog(d)-
reduction from the String Isomorphism Problem for Γ̂d-

groups to the String Isomorphism Problem for groups where

we are additionally given an almost d-ary sequence of

invariant partitions. Hence, in the remainder of this work,

we shall be concerned with solving the latter problem. The

basic approach to do this is to adapt the Local Certificates

Routine developed by Babai for his quasipolynomial time

isomorphism test [10].

V. AFFECTED ORBITS

The basis of Babai’s Local Certificates algorithm is a

group theoretic statement, the Unaffected Stabilizers The-

orem (see [10, Theorem 6]). In the following we generalize

this theorem to our setting.

Definition V.1 ([10]). Let G ≤ Sym(Ω). A homomorphism

ϕ : G → Sk is a giant representation if Gϕ ≥ Ak. In this

case an element α ∈ Ω is affected by ϕ if Gϕα �≥ Ak.

Remark V.2. Let ϕ : G→ Sk be a giant representation and

suppose α ∈ Ω is affected by ϕ. Then every element in the

orbit αG is affected by ϕ. We call αG an affected orbit (with

respect to ϕ).

With this definition we can state the generalization of the

Unaffected Stabilizers Theorem (see [10, Theorem 6]).

Theorem V.3. Let G ≤ Sym(Ω) be a permutation group
and suppose there is an almost d-ary sequence of G-
invariant partitions {Ω} = B0 � · · · � Bm = {{α} |
α ∈ Ω}. Furthermore let k > max{8, 2 + log2 d} and

ϕ : G → Sk be a giant representation. Let D ⊆ Ω be the
set of elements not affected by ϕ. Then Gϕ(D) ≥ Ak.

For the proof we roughly follow the argumentation from

[9]. However, on the technical level, several details need

to be changed to allow for the treatment of the semi-regular

operations allowed in our setting. A crucial part of the proof

is to show the following Lemma which is similar in nature

to [9, Lemma 8.3.1].

Lemma V.4. Let G ≤ Sym(Ω) be a transitive group and
suppose there is an almost d-ary sequence of invariant
partitions {Ω} = B0 � · · · � Bm = {{α} | α ∈ Ω}.
Furthermore let k > max{8, 2+log2 d}, and let ϕ : G→ Ak
be an epimorphism. Then Gϕα �= Ak for all α ∈ Ω.

Actually, the proof of the previous lemma even builds on

[9, Lemma 8.3.1].

Lemma V.5 ([9], Lemma 8.3.1). Let G ≤ Sd be a
transitive group and ϕ : G → Ak an epimorphism where
k > max{8, 2 + log2 d}. Then Gϕα �= Ak for all α ∈ [d].

Moreover, we shall need the following two lemmas.

Lemma V.6 (cf. [9], [26]). Let G ≤ K1 × · · · × K� be a
subdirect product and let ϕ : G → S be an epimorphism
where S is a non-abelian simple group. Furthermore let
πi : G → Ki be the projection to the i-th component and
Mi = ker(πi). Then there is some i∗ ∈ [�] such that Mi∗ ≤
ker(ϕ).

Lemma V.7. Let G be a group, H,K � G and suppose
ϕ : G → S is an epimorphism where S is a non-abelian
simple group. Furthermore suppose that Hϕ = Kϕ = S.
Then (H ∩K)ϕ = S.

Proof: Let N = ker(ϕ). Suppose that (H ∩K)ϕ �= S.

Since H ∩K�G and S is a simple group we conclude that

(H ∩K)ϕ = {1}, that is, H ∩K ≤ N .

Now let s1, s2 ∈ S be two arbitrary elements. Then

there are h ∈ H , k ∈ K such that ϕ(h) = s1 and

ϕ(k) = s2. Moreover, h−1k−1hk ∈ H ∩ K since H � G
and K �G. Hence, there is some n ∈ (H ∩K) ≤ N such

that hk = khn. But then s1s2 = ϕ(h)ϕ(k) = ϕ(hk) =
ϕ(khn) = ϕ(k)ϕ(h)ϕ(n) = s2s1. Since s1, s2 ∈ S were

chosen arbitrarily it follows that S is abelian.

Proof of Lemma V.4: We prove the statement by

induction on the cardinality of G. Let K = G(B1) be

the normal subgroup stabilizing the block system B1 and

N = ker(ϕ). Observe that N is a maximal normal subgroup

of G (N � G is a maximal normal subgroup of G if and

only if the quotient group G/N is simple; here G/N is

isomorphic to Gϕ = Ak). Hence, it holds that K ≤ N or

〈K,N〉 = KN = G.

First suppose K ≤ N . Then ϕ factors across G →
GB1

ψ→ Ak. Observe that ψ is an epimorphism since ϕ
is an epimorphism. Suppose |B1| ≤ d. Then, by Lemma

95

V.5, for every B ∈ B1 it holds that (GB1)ψB �= Ak.

Hence, Gϕα ≤ GϕB �= Ak where B ∈ B1 is the unique

set such that α ∈ B. Otherwise GB1 is semi-regular and

hence, (GB1)ψB = {1} �= Ak for all B ∈ B1. Again,

Gϕα ≤ GϕB �= Ak where B ∈ B1 is the unique set such

that α ∈ B.

So consider the case that KN = G, that is, Kϕ = Ak.

Suppose towards a contradiction that there is some α ∈ Ω
such that Gϕα = Ak. Pick B ∈ B1 such that α ∈ B. In

particular, GϕB = Ak.

Claim 1. Gϕ(B) �= Ak.

Proof. Assume towards a contradiction that Gϕ(B) = Ak.

Then, by Lemma V.7, Kϕ
(B) = (G(B) ∩ K)ϕ = Ak since

G(B) �GB , K �GB and Kϕ = Ak.

On the other hand, let Ω1, . . . ,Ω� be the orbits of K. Let

πi : K → Sym(Ωi) be the restriction of K to Ωi, Ki =
im(πi) and Mi = ker(πi). By Lemma V.6 there is some

i ∈ [�] such that Mi ≤ N . Since G acts transitively on the

blocks {Ω1, . . . ,Ω�} the groups Mi, i ∈ [�], are conjugate

subgroups in G and therefore Mi ≤ N for all i ∈ [�]. Pick

i∗ ∈ [�] such that α ∈ Ωi∗ . Since Mi∗ ≤ N the epimorphism

ϕ|K : K → Ak factors across Ki∗ as K
πi∗→ Ki∗

ψ→ Ak.

Hence, Kψ
i∗ = Ak. Moreover, B1[Ωi∗] � · · · � Bm[Ωi∗]

is an almost d-ary sequence of partitions for Ki∗ . By the

induction hypothesis it follows that (Ki∗)
ψ
α �= Ak and thus,

Kϕ
α �= Ak. But this is a contradiction since Kϕ

(B) ≤ Kϕ
α . �

Since Gϕ(B) � GϕB it follows Gϕ(B) = {1}. So ϕ|GB

factors across GB → GBB
ψ→ Ak. Moreover, ϕ|Gα

factors

across Gα → GBα
ψ′→ Ak, where ψ′ = ψ|GB

α
. Overall this

means (GBB)
ψ = Ak and (GBB)

ψ
α = ((Gα)

B)ψ
′
= Ak.

But this contradicts the induction hypothesis since B1[B] �
· · · � Bm[B] is an almost d-ary sequence of GBB-invariant

partitions and GBB is transitive.

We also use Babai’s Affected Orbit Lemma, which does

not need to be adapted to our setting.

Theorem V.8 ([10, Theorem 6(b)]). Let G ≤ Sym(Ω) be
a permutation group and suppose ϕ : G → Sk is a giant
representation for k ≥ 5. Suppose Δ ⊆ Ω is an affected
orbit of G (with respect to ϕ). Then every orbit of ker(ϕ)
in Δ has length at most |Δ|/k.

VI. LOCAL CERTIFICATES

Based on the generalization to the Unaffected Stabilizers

Theorem presented in the previous section we can adapt the

Local Certificates technique developed in [10] to our setting.

Besides the adaptation to our setting, the main difference

is a more precise analysis of the running time which is

required for our overall analysis. Before doing so, we need

to introduce some notation, which follows the one in [9].

Let G ≤ Sym(Ω) be a permutation group and let

x : Ω→ Σ be a string. Furthermore let ϕ : G→ Sk be a giant

representation. For a set T ⊆ [k] let GT = ϕ−1((Gϕ)T).
Similarly we define G(T) = ϕ−1((Gϕ)(T)).

For a set Δ we denote by Alt(Δ) the alternating group

acting with its standard action on the set Δ. Moreover, we

refer to the groups Alt(Δ) and Sym(Δ) as the giants where

Δ is an arbitrary finite set.

Definition VI.1. A set T ⊆ [k] is full if ((AutGT
(x))ϕ)T ≥

Alt(T). A certificate of fullness is a subgroup K ≤
AutGT

(x) such that (Kϕ)T ≥ Alt(T). A certificate of
non-fullness is a non-giant M ≤ Sym(T) such that

((AutGT
(x))ϕ)T ≤M .

Let W ⊆ Ω be G-invariant and let y : Ω→ Σ be a second

string. Recall that IsoWG (x, y) = {g ∈ G | ∀α ∈ W : x(α) =
y(αg)} and AutWG (x) = IsoWG (x, x).

For H ≤ G we define Aff(H,ϕ) = {α ∈ Ω | Hϕ
α �≥ Ak}.

Note that for H1 ≤ H2 ≤ G it holds that Aff(H1, ϕ) ⊇
Aff(H2, ϕ).

The Local Certificates algorithm is used to determine

whether a given test set T is full and to produce a cor-

responding certificate.

Lemma VI.2. Let x : Ω→ Σ be a string, G ≤ Sym(Ω) be
a group and suppose there is an almost d-ary sequence of
G-invariant partitions {Ω} = B0 � · · · � Bm = {{α} |
α ∈ Ω}. Furthermore suppose there is a giant representation
ϕ : G → Sk and let T ⊆ [k] be a set of size |T | = t >
max{8, 2 + log2 d}.

Then there are natural numbers n1, . . . , n� ≤ n/2 such
that

∑�
i=1 ni ≤ n and, for each i ∈ [�] using at most

t! recursive calls to String Isomorphism over domain size
ni and O(t! · nc) additional computation, one can decide
whether T is full or not and generate a corresponding
certificate.

Proof: Without loss of generality assume T = [k].
Otherwise one can compute the group GT and restrict the

image of ϕ to the set T .

Consider the algorithm given in Figure 1. The algorithm

computes, for increasing windows W0 ⊆ W1 ⊆ W2 ⊆ . . . ,
the group Gi of permutations that respect the input string x

on the window Wi, that is, Gi = AutWi

G (x) = Aut
W∗

i

Gi−1(x).
Note that Gi ≤ Gi−1 and therefore Wi+1 ⊇ Wi for i ≥ 1
(initially W1 �= ∅ since at least one point has to be affected).

The algorithm stops when the current group Gϕi is not a giant

or the window stops growing.

Let i∗ be the value of the variable i at the end of while-

loop. Furthermore let W = Wi∗ . Note that {W ∗
j | 1 ≤ j ≤

i∗} forms a partition of the set W .

We first show the correctness of the algorithm. For every

0 ≤ j ≤ i∗ it holds that AutG(x) ≤ Gj ≤ G. We

distinguish two cases. First suppose that Gϕi∗ �≥ Ak. Then

Gϕi∗ forms a certificate of non-fullness. Otherwise Gϕi∗ ≥ Ak
and W = Aff(Gi∗ , ϕ). Note that B0, . . . ,Bm forms an

almost d-ary sequence of invariant partitions for the group

96

Input: G ≤ Sym(Ω), x : Ω → Σ, and ϕ : G → Sk with

k > max{8, 2 + log2 d}. There exists an almost d-ary

sequence of G-invariant partitions {Ω} = B0 � · · · �
Bm = {{α} | α ∈ Ω}.

Output: non-giant M ≤ Sk with (AutG(x))
ϕ ≤M or K ≤

AutG(x) with Kϕ ≥ Ak.

1: G0 := G
2: W0 := ∅
3: i := 0
4: while Gϕi ≥ Ak and Wi �= Aff(Gi, ϕ) do
5: Wi+1 := Aff(Gi, ϕ)
6: W ∗

i+1 :=Wi+1 \Wi

7: if |W ∗
i+1| ≤ 1

2 |Ω| then
8: Gi+1 := Aut

W∗
i+1

Gi
(x)

9: else
10: Gi+1 := ∅
11: N := ker(ϕ|Gi)
12: for g ∈ Gϕi do
13: compute ḡ ∈ ϕ−1(g)
14: Gi+1 := Gi+1 ∪AutW

∗
i+1

Nḡ (x)
15: end for
16: end if
17: i := i+ 1
18: end while
19: if Gϕi �≥ Ak then
20: return Gϕi
21: else
22: return (Gi)(Ω\Wi)

23: end if

Figure 1. The LocalCertificates algorithm

Gi∗ (cf. Observation IV.2). So ((Gi∗)(Ω\W))
ϕ ≥ Ak by

Theorem V.3. Furthermore, it easy to check that Gi∗ respects

the string x on all positions in Wj for all 0 ≤ j ≤ i∗. Hence,

(Gi∗)(Ω\W) ≤ AutG(x) because it respects all positions

within W and fixes all other positions.

It remains to analyze the running time of the algorithm.

Again we distinguish two cases. First suppose |W ∗
j | ≤ n/2

for all j ∈ [i∗]. Then, for each j ∈ [i∗], the algorithm

makes one recursive call to String Isomorphism over domain

size |W ∗
i | ≤ n/2 (Line 8) and

∑
j∈[i∗] |W ∗

j | ≤ |W | ≤ n.

Otherwise there is a unique j∗ ∈ {0, . . . , i∗ − 1} such

that |W ∗
j∗+1| > n/2. Let N = ker(ϕ|Gj∗). Since all

elements in W ∗
j∗+1 are affected by ϕ with respect to Gj∗

it holds that every orbit of N in W ∗
j∗+1 has size at most

|W ∗
j∗+1|/k by Theorem V.8. For each orbit the algorithm

makes k! calls to String Isomorphism where the domain is

restricted to exactly this orbit (Line 14). Additionally, for

every j ∈ [i∗], j �= j∗ + 1 there is one recursive call to

String Isomorphism over domain size |W ∗
j |.

Similar to the previous lemma we can also adapt the

algorithms to compare local certificates and to aggregate the

local certificates (cf. [10]). From the aggregation algorithm

we obtain the following lemma.

The symmetry defect of a group G ≤ Sym(Ω) is the

minimal t ∈ [n] such that there is a set Δ ⊆ Ω of size

|Δ| = n− t such that Alt(Δ) ≤ G (the group Alt(Δ) fixes

all elements of Ω \ Δ). In this case the relative symmetry
defect is t/n. For a relational structure A we define the

(relative) symmetry defect of A to be the (relative) symmetry

defect of its automorphism group Aut(A).

Lemma VI.3. Let x1, x2 : Ω → Σ be two strings, G ≤
Sym(Ω) be a group and suppose there is an almost d-ary
sequence of G-invariant partitions {Ω} = B0 � · · · �
Bm = {{α} | α ∈ Ω}. Furthermore suppose there is a
giant representation ϕ : G→ Sk. Let max{8, 2+ log2 d} <
t < k/10.

Then there are natural numbers � ∈ N and n1, . . . , n� ≤
n/2 such that

∑�
i=1 ni ≤ kO(t)n and, for each i ∈ [�] using

a recursive call to String Isomorphism over domain size ni,
and kO(t)nc additional computation, one obtains for i = 1, 2
one of the following:

1) a family of r ≤ k6 many t-ary relational structures
Ai,j , for j ∈ [r], associated with xi, each with domain
Di,j ⊆ [k] of size |Di,j | ≥ 3

4k and with relative
symmetry defect at least 1

4 such that

{A1,1, . . . ,A1,r}ϕ(g) = {A2,1, . . . ,A2,r}
for every g ∈ IsoG(x1, x2), or

2) a subset Δi ⊆ [k] associated with xi of size |Δi| ≥ 3
4k

and Ki ≤ AutGΔi
(xi) such that (Kϕ

i)
Δi ≥ Alt(Δi)

and
Δ
ϕ(g)
1 = Δ2

for every g ∈ IsoG(x1, x2).
The aggregation algorithm either results in a small family

of t-ary relational structures (where t = Θ(log d)) or finds

many G-automorphisms of the input strings. In the former

case we use Babai’s algorithm as a black box to decide

isomorphism of the relational structures to significantly

reduce the size of the input group G. More precisely, we

obtain the following statement.

Lemma VI.4. Suppose Option 1 of Lemma VI.3 is satisfied,
yielding a number r ≤ k6 and relational structures Ai,j for
i ∈ [2], j ∈ [r]. Then there are subgroups Hj ≤ G and
elements hj ∈ Sym(Ω) for j ∈ [r] such that

1) |Gϕ : Hϕ
j | ≥ (4/3)k for all j ∈ [r], and

2) x1 ∼=G x2 if and only if x1 ∼=Hjhj
x2 for some j ∈ [r],

and given representations for the sets IsoHjhj (x1, x2)
for all j ∈ [r] one can compute in polynomial time a
representation for IsoG(x1, x2).

Moreover, given the relational structures Ai,j for all i ∈ [2]
and j ∈ [r], the groups Hj and elements hj can be computed
in time kO(t

c(log k)c)nc for some constant c.

97

Remark VI.5. The proof of the previous lemma is the

only place where we use Babai’s quasipolynomial time

isomorphism test [10] as a black box.

In the other case we utilize the symmetries of the input

strings to make significant progress.

Lemma VI.6. Suppose Option 2 of Lemma VI.3 is satisfied.
Then there is a number r ∈ {1, 2}, a subgroup H ≤ G and
elements hj ∈ Sym(Ω) for j ∈ [r] such that

1) |Gϕ : Hϕ| ≥ (4/3)k, and
2) x1 ∼=G x2 if and only if x1 ∼=Hhj x2 for some j ∈ [r],

and given representations for the sets IsoHhj
(x1, x2)

for all j ∈ [r] and a generating set for K1 one
can compute in polynomial time a representation for
IsoG(x1, x2).

Moreover, given the sets Δi for all i ∈ [2], the group H and
the elements hi can be computed in polynomial time.

Proof: We let H = G(Δ1) (recall that G(T) =

ϕ−1((Gϕ)(T)) for T ⊆ [k]). Let g ∈ G such that Δgϕ

1 = Δ2

and τ ∈ GΔ1
such that (τϕ)Δ1 is a transposition. Now

define h1 = g and h2 = τg. Then x1 ∼=G x2 if and only if

x1 ∼=Hhj
x2 since (Kϕ

1)
Δ1 ≥ Alt(Δ1). Moreover, if Gjgj =

IsoHhj (x1, x2) then IsoG(x1, x2) =
⋃
j=1,2〈K1, Gj〉gj . Fi-

nally, |Gϕ : Hϕ| ≥ |Alt(Δ1)| ≥ (4/3)k.

VII. STRING ISOMORPHISM

With the adaption of Babai’s techniques to our setting

we overall obtain the following tool to build our recursive

algorithm.

Lemma VII.1. Let G ≤ Sym(Ω) be transitive and let
x, y : Ω → Σ be two strings. Moreover, suppose there is
an almost d-ary sequence of G-invariant partitions {Ω} =
B0 � · · · � Bm = {{α} | α ∈ Ω} such that |B1| ≤ d.
Then there are natural numbers � ∈ N and n1, . . . , n� ≤ n/2
such that

∑�
i=1 ni ≤ 2O((log d)

3)n and, for each i ∈ [�] using
a recursive call to String Isomorphism over domain size at
most ni and dO((log d)

c)nc additional computation, one can
compute IsoG(x, y).

Combining the type of recursion described in the previous

lemma with standard Luks reduction we obtain an algorithm

solving string isomorphism in case the group is equipped

with an almost d-ary sequence of invariant partitions.

Theorem VII.2. Let G ≤ Sym(Ω) be a permutation group
and let x, y : Ω→ Σ be two strings. Moreover, suppose there
is an almost d-ary sequence of G-invariant partitions {Ω} =
B0 � · · · � Bm = {{α} | α ∈ Ω}. Then one can compute
IsoG(x, y) in time nO((log d)

c), for an absolute constant c.

Proof: Consider the algorithm described in Figure 2.

The algorithm essentially distinguishes between two cases.

If the input group G is not transitive or the action of G on

the block system B1 is semi-regular, the algorithm follows

Input: G ≤ Sym(Ω) a Γ̂d-group, x, y : Ω → Σ two strings

and an almost d-ary sequence of G-invariant partitions

{Ω} = B0 � · · · � Bm = {{α} | α ∈ Ω}.
Output: IsoG(x, y)

1: if G is not transitive then
2: compute orbits Ω1, . . . ,Ωs
3: recursively process group orbit by orbit

4: return IsoG(x, y)
5: else
6: if GB1 is semi-regular then
7: apply standard Luks reduction

8: return IsoG(x, y)
9: else

10: apply Lemma VII.1

11: return IsoG(x, y)
12: end if
13: end if

Figure 2. Algorithm for String Isomorphism

Luks algorithm recursively computing the set IsoG(x, y). In

the other case G is transitive and |B1| ≤ d and hence, we

can apply Lemma VII.1 to recursively compute IsoG(x, y).
Clearly, it computes the desired set of isomorphisms. The

bound on the running follows from Lemma II.4. Note that

the bottleneck is the type of recursion used in Lemma VII.1.

Also every group H , for which the algorithm performs a

recursive call, is the projection of a subgroup of G to an

invariant subset of the domain. Hence, by restricting the

partitions B0, . . . ,Bm to the domain of H one obtains a

sequence of partitions for the group H with the desired

properties (cf. Observation IV.2).

Combining Theorem IV.3 and Theorem VII.2 we obtain

the main technical result of this work.

Theorem VII.3. Let G ≤ Sym(Ω) be a Γ̂d-group and let
x, y : Ω → Σ be two strings. Then there is an algorithm
deciding whether x ∼=G y in time nO((log d)

c), for an absolute
constant c.

Proof: Using orbit-by-orbit processing we can assume

that the group G is transitive. For a transitive group the

statement follows by first applying Theorem IV.3 and then

Theorem VII.2.

VIII. APPLICATIONS

Using the improved algorithm for string isomorphism

we can now prove the main result of this work using the

following well-known reduction.

Theorem VIII.1 ([1], [3]). There is a polynomial-time
Turing-reduction from the Graph Isomorphism Problem for
graphs of maximum degree d to the String Isomorphism
Problem for Γ̂d-groups (the running time of the reduction
does not depend on d).

98

The reduction follows [1] using an additional trick pre-

sented in [3, Section 4.2] to remove the dependence of the

running time on d.
Combining this reduction with the improved algorithm

for string isomorphism, we get the desired algorithm for

isomorphism tests of bounded degree graphs.

Theorem VIII.2 (Theorem I.1 restated). The Graph Iso-
morphism Problem for graphs of maximum degree d can be
solved in time nO((log d)

c), for an absolute constant c.

Proof: This follows from Theorem VII.3 and VIII.1.
For a second application of Theorem VII.3 consider the

isomorphism problem for relational structures.

Theorem VIII.3. Let A = (D,R), A′ = (D,R′) be
relational structures where R,R′ ⊆ Dt are t-ary relations.
Then one can decide whether A is isomorphic to A′ in time
nO(t·(logn)

c) where n = |D|.
In many cases this leads to a better running time than

first translating the structure into a graph and than applying

Babai’s algorithm to test whether the two resulting graphs

are isomorphic. In particular, in case the arity t is large and

also the size of the relation is large our method gives a much

better worst case complexity than the other approach.
Also note that as a special case the same running time can

be obtained for hypergraphs if t is the maximal hyperedge

size. This also improves on previous results (see e.g. [27]).

Corollary VIII.4. Let H = (V, E), H′ = (V, E ′) be two
hypergraphs such that every hyperedge E ∈ E has size
|E| ≤ t. Then one can decide whether H is isomorphic
to H′ in time nO(t·(log n)

c) where n = |V |.
IX. CONCLUDING REMARKS

We have obtained a new graph isomorphism test with

a running time bounded by a polynomial of degree poly-

logarithmic in the maximum degree of the input graphs.

Technically, this result relies on some heavy group theory,

new combinatorial tricks that allow us to reduce the string

isomorphism problem for Γ̂d groups to a setting where we

have an “almost d-ary” sequence of invariant partitions con-

trolling the operation of the groups, and a refinement of the

techniques introduced by Babai [10] for his quasipolynomial

time isomorphism test.
We hope that the machinery we have developed here will

have further applications and ultimately even lead to an

improvement of Babai’s isomorphism test. More immediate

applications may be obtained for the isomorphism problem

under restrictions of other parameters than the maximum

degree. For example, we conjecture that there also is an

isomorphism test running in time nO((log k)
c), where k is

the tree width of the input graphs.
Another related problem that we leave open is whether the

graph isomorphism problem parameterized by the maximum

degree of the input graphs is fixed-parameter tractable.

REFERENCES

[1] E. M. Luks, “Isomorphism of graphs of bounded valence
can be tested in polynomial time,” Journal of Computer
and System Sciences, vol. 25, no. 1, pp. 42 – 65, 1982.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/0022000082900095

[2] L. Babai, W. M. Kantor, and E. M. Luks, “Computational
complexity and the classification of finite simple groups,”
in 24th Annual Symposium on Foundations of Computer
Science, Tucson, Arizona, USA, 7-9 November 1983. IEEE
Computer Society, 1983, pp. 162–171. [Online]. Available:
https://doi.org/10.1109/SFCS.1983.10

[3] L. Babai and E. M. Luks, “Canonical labeling of graphs,”
in Proceedings of the 15th Annual ACM Symposium
on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, D. S. Johnson, R. Fagin, M. L.
Fredman, D. Harel, R. M. Karp, N. A. Lynch, C. H.
Papadimitriou, R. L. Rivest, W. L. Ruzzo, and J. I. Seiferas,
Eds. ACM, 1983, pp. 171–183. [Online]. Available:
http://doi.acm.org/10.1145/800061.808746

[4] M. Grohe and D. Marx, “Structure theorem and isomorphism
test for graphs with excluded topological subgraphs,” SIAM
J. Comput., vol. 44, no. 1, pp. 114–159, 2015. [Online].
Available: https://doi.org/10.1137/120892234

[5] S. Kratsch and P. Schweitzer, “Graph isomorphism for
graph classes characterized by two forbidden induced
subgraphs,” Discrete Applied Mathematics, vol. 216, pp.
240–253, 2017. [Online]. Available: https://doi.org/10.1016/
j.dam.2014.10.026

[6] E. M. Luks, “Permutation groups and polynomial-time com-
putation,” in Groups And Computation, ser. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science,
vol. 11. DIMACS/AMS, 1991, pp. 139–176.

[7] I. N. Ponomarenko, “The isomorphism problem for classes
of graphs closed under contraction,” Journal of Soviet
Mathematics, vol. 55, no. 2, pp. 1621–1643, Jun 1991.
[Online]. Available: https://doi.org/10.1007/BF01098279

[8] Á. Seress, Permutation Group Algorithms, ser. Cambridge
Tracts in Mathematics. Cambridge University Press,
2003. [Online]. Available: https://books.google.de/books?id=
hxFqdbfc CMC

[9] L. Babai, “Graph isomorphism in quasipolynomial time,”
CoRR, vol. abs/1512.03547v2, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03547

[10] ——, “Graph isomorphism in quasipolynomial time
[extended abstract],” in Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, D. Wichs
and Y. Mansour, Eds. ACM, 2016, pp. 684–697. [Online].
Available: http://doi.acm.org/10.1145/2897518.2897542

[11] L. Babai, P. Cameron, and P. Plfy, “On the orders of
primitive groups with restricted nonabelian composition
factors,” Journal of Algebra, vol. 79, no. 1, pp. 161
– 168, 1982. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0021869382903234

99

[12] M. Grohe, D. Neuen, P. Schweitzer, and D. Wiebking,
“An improved isomorphism test for bounded-tree-width
graphs,” in 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic, ser. LIPIcs, I. Chatzigiannakis,
C. Kaklamanis, D. Marx, and D. Sannella, Eds., vol. 107.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018,
pp. 67:1–67:14. [Online]. Available: https://doi.org/10.4230/
LIPIcs.ICALP.2018.67

[13] D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh,
“Fixed-parameter tractable canonization and isomorphism
test for graphs of bounded treewidth,” in 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, October 18-21, 2014. IEEE
Computer Society, 2014, pp. 186–195. [Online]. Available:
https://doi.org/10.1109/FOCS.2014.28

[14] J. Rotman, An Introduction to the Theory of Groups,
ser. Graduate Texts in Mathematics. Springer New York,
1999. [Online]. Available: https://books.google.de/books?id=
lYrsiaHSHKcC

[15] J. D. Dixon and B. Mortimer, Permutation groups,
ser. Graduate Texts in Mathematics. Springer-Verlag,
New York, 1996, vol. 163. [Online]. Available: http:
//dx.doi.org/10.1007/978-1-4612-0731-3

[16] M. W. Liebeck and A. Shalev, “Simple groups, permutation
groups, and probability,” J. Amer. Math. Soc., vol. 12,
no. 2, pp. 497–520, 1999. [Online]. Available: http:
//dx.doi.org/10.1090/S0894-0347-99-00288-X

[17] ——, “Bases of primitive linear groups,” Journal of
Algebra, vol. 252, no. 1, pp. 95 – 113, 2002.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0021869302000017

[18] ——, “Bases of primitive linear groups II,” Journal
of Algebra, vol. 403, pp. 223 – 228, 2014.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0021869314000490

[19] B. N. Cooperstein, “Minimal degree for a permutation
representation of a classical group,” Israel Journal of
Mathematics, vol. 30, no. 3, pp. 213–235, Sep 1978.
[Online]. Available: https://doi.org/10.1007/BF02761072

[20] P. Kleidman and M. Liebeck, The subgroup structure
of the finite classical groups, ser. London Mathematical
Society Lecture Note Series. Cambridge University Press,
Cambridge, 1990, vol. 129. [Online]. Available: http:
//dx.doi.org/10.1017/CBO9780511629235

[21] D. Gluck, kos Seress, and A. Shalev, “Bases for primitive
permutation groups and a conjecture of Babai,” Journal
of Algebra, vol. 199, no. 2, pp. 367 – 378, 1998.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0021869397971490

[22] M. W. Liebeck, “On minimal degrees and base sizes
of primitive permutation-groups,” Archiv der Mathematik,
vol. 43, pp. 11–15, 1984. [Online]. Available: http:
//dx.doi.org/10.1007/BF01193603

[23] P. J. Cameron, “Finite permutation groups and finite simple
groups,” Bulletin of the London Mathematical Society,
vol. 13, no. 1, pp. 1–22, 1981. [Online]. Available:
http://dx.doi.org/10.1112/blms/13.1.1

[24] A. Marti, “On the orders of primitive groups,” Journal
of Algebra, vol. 258, no. 2, pp. 631 – 640, 2002.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0021869302006464

[25] L. Babai, E. M. Luks, and Á. Seress, “Permutation groups in
NC,” in Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, A. V.
Aho, Ed. ACM, 1987, pp. 409–420. [Online]. Available:
http://doi.acm.org/10.1145/28395.28439

[26] U. Meierfrankenfeld, Non-Finitary Locally Finite Simple
Groups. Dordrecht: Springer Netherlands, 1995, pp.
189–212. [Online]. Available: https://doi.org/10.1007/
978-94-011-0329-9 7

[27] L. Babai and P. Codenotti, “Isomorhism of hypergraphs of
low rank in moderately exponential time,” in 49th Annual
IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA.
IEEE Computer Society, 2008, pp. 667–676. [Online].
Available: https://doi.org/10.1109/FOCS.2008.80

100

