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Abstract—We show that approximate similarity (near
neighbour) search can be solved in high dimensions with
performance matching state of the art (data independent)
Locality Sensitive Hashing, but with a guarantee of no
false negatives. Specifically we give two data structures for
common problems. For c-approximate near neighbour in
Hamming space we get query time dn1/c+o(1) and space
dn1+1/c+o(1) matching that of [Indyk and Motwani, 1998]
and answering a long standing open question from [Indyk,
2000a] and [Pagh, 2016] in the affirmative. For (s1, s2)-
approximate Jaccard similarity we get query time d2nρ+o(1)

and space d2n1+ρ+o(1), ρ = log 1+s1
2s1

/ log 1+s2
2s2

, when sets
have equal size, matching the performance of [Pagh and
Christiani, 2017].

The algorithms are based on space partitions, as with
classic LSH, but we construct these using a combination
of brute force, tensoring and splitter functions à la [Naor
et al., 1995]. We also show two dimensionality reduction
lemmas with 1-sided error.

I. INTRODUCTION

Locality Sensitive Hashing has been a leading approach

to high dimensional similarity search (nearest neighbour

search) data structures for the last twenty years. Intense

research [Indyk and Motwani, 1998, Gionis et al.,

1999, Kushilevitz et al., 2000, Indyk, 2000b, Indyk,

2001, Charikar, 2002, Datar et al., 2004, Lv et al.,

2007, Panigrahy, 2006, Andoni and Indyk, 2006, An-

doni et al., 2014, Andoni et al., 2017a, Becker et al.,

2016, Ahle et al., 2017, Aumüller et al., 2017] has

applied the concept of space partitioning to many different

problems and similarity spaces. These data structures

are popular in particular because of their ability to

overcome the ‘curse of dimensionality’ and conditional

lower bounds by [Williams, 2005], and give sub-linear

query time on worst case instances. They achieve this

by being approximate and Monte Carlo, meaning they

may return a point that is slightly further away than the

nearest, and with a small probability they may completely

fail to return any nearby point.

Definition 1 ((c, r)-Approximate Near Neighbour).
Given a set P of n data points in a metric space (X,dist),
build a data structure, such that given any q ∈ X , for
which there is an x ∈ P with dist(q, x) ≤ r, we return a
x′ ∈ P with dist(q, x′) ≤ cr.

A classic problem in high dimensional geometry

has been whether data structures existed for (c, r)-
Approximate Near Neighbour with Las Vegas guarantees,

and performance matching that of Locality Sensitive

Hashing. That is, whether we could guarantee that a query

will always return an approximate near neighbour, if a

near neighbour exists; or simply, if we could rule out false

negatives? The problem has seen practical importance

as well as theoretical. There is in general no way of

verifying that an LSH algorithm is correct when it says

‘no near neighbours’ - other than iterating over every point

in the set, in which case the data structure is entirely

pointless. This means LSH algorithms can’t be used

for many critical applications, such as finger print data

bases. Even more applied, it has been observed that

tuning the error probability parameter is hard to do well,

when implementing LSH [Gionis et al., 1999, Arya et al.,

1998]. A Las Vegas data structure entirely removes this

problem. Different authors have described the problem

with different names, such as ‘Las Vegas’ [Indyk, 2000a],

‘Have no false negatives’ [Goswami et al., 2017, Pagh,

2016], ‘Have total recall’ [Pham and Pagh, 2016], ‘Are

exact’ [Arasu et al., 2006] and ‘Are explicit’ [Karppa

et al., 2016].

Recent years have shown serious progress towards

finally solving the problem. In particular [Pagh, 2016]

showed that the problem in Hamming space admits

a Las Vegas algorithm with query time dn1.38/c+o(1),
matching the dn1/c data structure of [Indyk and Motwani,

1998] up to a constant factor in the exponent. In this

paper we give an algorithm in the Locality Sensitive

Filter framework [Becker et al., 2016, Christiani, 2017],

which not only removes the factor 1.38, but improves

to dn1/(2c−1)+o(1) in the case cr ≈ d/2, matching the

algorithms of [Andoni et al., 2015] for Hamming space.

We would like to find an approach to Las Vegas LSH

that generalizes to the many different situations where

LSH is useful. Towards that goal, we present as second

algorithm for the approximate similarity search problem

under Braun-Blanquet similarity, which is defined for

sets x, y ⊆ [d] as sim(x, y) = ∣x ∩ y∣/max(∣x∣, ∣y∣). We

refer to the following problem definition:
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Definition 2 (Approximate similarity search). Let P ⊆
P([d]) be a set of ∣P ∣ = n subsets of [d]; (here P(X)
denotes the powerset of X .) let sim ∶ P([d])×P([d]) →
[0,1] be a similarity measure. For given s1, s2 ∈ [0,1],
s1 > s2, a solution to the “(s1, s2)-similarity search
problem under sim” is a data structure that supports the
following query operation: on input q ⊆ [d], for which
there exists a set x ∈ P with sim(x, q) ≥ s1, return x′ ∈ P
with sim(x′, q) > s2.

The problem has traditionally been solved using the

Min-Hash LSH [Broder et al., 1997, Broder, 1997], which

combined with the results of Indyk and Motwani [Indyk

and Motwani, 1998] gives a data structure with query

time dnρ and space dn1+ρ for ρ = log s1/ log s2. Recently

it was shown by [Pagh and Christiani, 2017] that this

could be improved for vectors of equal weight to ρ =
log 2s1

1+s1 / log
2s2
1+s2 . We show that it is possible to achieve

this recent result with a data structure that has no false

negatives.

A. Summary of Contributions

We present the first Las Vegas algorithm for approx-

imate near neighbour search, which gives sub-linear

query time for any approximation factor c > 1. This

solves a long standing open question from [Indyk, 2000a]

and [Pagh, 2016]. In particular we get the following two

theorems:

Theorem 1. Let X = {0,1}d be the Hamming space with
metric dist(x, y) = ∥x⊕ y∥ ∈ [0, d] where ⊕ is “xor” or
addition in Z2. For every choice of 0 < r, 1 < c and cr ≤
d/2, we can solve the (c, r)-approximate near neighbour
problem in Hamming space with query time dnρ and
space usage dn1+ρ where ρ = 1/c + Ô((logn)−1/4).

Note: Ô hides log logn factors.

Corollary 1. When r/d = Ω((logn)−1/6), we get the
improved exponent ρ = 1−cr/d

c(1−r/d) + Ô((logn)
−1/3d/r).

This improves upon theorem 1 when r/d is constant (or

slightly sub-constant), including in the important “random

case”, when r/d = 1/(2c) where we get ρ = 1/(2c− 1) +
o(1).
Theorem 2. Let sim be the Braun-Blanquet similarity
sim(x, y) = ∣x ∩ y∣/max(∣x∣, ∣y∣). For every choice of
constants 0 < s2 < s1 < 1, we can solve the (s1, s2)-
similarity problem over sim with query time d2 nρ

and space usage d2 n1+ρ where ρ = log s1/ log s2 +
Ô((logn)−1/3(s1/s2)1/3).

The first result matches the lower bounds by

[O’Donnell et al., 2014] for “data independent” LSH

data structures for Hamming distance and improves

upon [Pagh, 2016] by a factor of log 4 > 1.38 in

the exponent. By deterministic reductions from �2 to

�1 [Indyk, 2007] and �1 to hamming, this also gives the

best currently known Las Vegas data structures for �1 and

�2 in R
d. The second result matches the corresponding

lower bounds by [Pagh and Christiani, 2017] for Braun-

Blanquet similarity and, by reduction, Jaccard similarity.

See table I for more comparisons.

Detaching the data structures from our constructions,

we get the first explicit constructions of large Turán

Systems [Sidorenko, 1995]. Our systems can even be effi-

ciently decoded, which is likely to have other algorithmic

applications.

B. Background and Related Work

The arguably most successful technique for similarity

search in high dimensions is Locality-Sensitive Hashing

(LSH), introduced in 1998 by [Indyk and Motwani,

1998, Har-Peled et al., 2012]. The idea is to make a

random space partition in which similar points are likely

to be stored in the same region, thus allowing the search

space to be pruned substantially. The granularity of the

space partition (the size/number of regions) is chosen to

balance the expected number of points searched against

keeping a (reasonably) small probability of pruning away

the actual nearest point. To ensure a high probability of

success (good recall) one repeats the above construction,

independently at random, a small polynomial (in n)

number of times.

In [Pagh, 2016, Arasu et al., 2006] it was shown

that one could change the above algorithm to not do

the repetitions independently. (Eliminating the error

probability of an algorithm by independent repetitions,

of course, takes an infinite number of repetitions.) By

making correlated repetitions, it was shown possible

to reach zero false negatives much faster, after only

polynomially many repetitions. This means, for example,

that they needed more repetitions than LSH does to get

0.99 success rate, but fewer than LSH needs for success

rate 1 − 2−n.

An alternative to LSH was introduced by [Becker

et al., 2016, Dubiner, 2010]. It is referred to as Locality

Sensitive Filters, or LSF. While it achieves the same

bounds as LSH, LSF has the advantage of giving more

control to the algorithm designer for balancing different

performance metrics. For example, it typically allows

better results for low dimensional data, d = O(logn),
and space/time trade-offs [Andoni et al., 2017a]. The

idea is to sample a large number of random sections

of the space. In contrast to LSH these sections are

not necessarily partitions and may overlap heavily. For

example, for points on the sphere Sd−1 the sections may

be defined by balls around the points of a spherical

code. One issue compared to LSH is that the number

of sections in LSF is very large. This means we need

to impose some structure so we can efficiently find all
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sections containing a particular point. With LSH the space

partitioning automatically provided such an algorithm,

but for LSF it is common to use a kind of random product

code. (An interesting alternative is [Pagh and Christiani,

2017], which uses a random branching processes.) LSF is

similar to LSH in that it only approaches 100% success

rate as the number of sections goes to infinity.

The work in this paper can be viewed as way of

constructing correlated, efficiently decodable filters for

Hamming space and Braun-Blanquet similarity. That

is, our filters guarantee that any two close points are

contained in a shared section, without having an infinite

number of sections. Indeed the number of sections needed

is equal to that needed by random constructions for

achieving constant success probability, up to no(1) factors.

It is not crucial that our algorithms are in the LSF

framework rather than LSH. Our techniques can make

correlated LSH space partitions of optimal size as well as

filters. However the more general LSF framework allows

for us to better show of the strength of the techniques.

One very important line of LSH/LSF research, that we

don’t touch upon in this paper, is that of data dependency.

In the seminal papers [Andoni et al., 2014, Andoni

and Razenshteyn, 2015, Andoni et al., 2017a] it was

shown that the performance of space partition based data

structures can be improved, even in the worst case, by

considering the layout of the points in the data base.

Using clustering, certain bad cases for LSH/LSF can be

removed, leaving only the case of “near random” points

to be considered, on which LSH works very well. It

seems possible to make Las Vegas versions of these

algorithms as well, since our approach gives the optimal

performance in these near random cases. However one

would need to find a way to derandomize the randomized

clustering step used in their approach.

There is of course also a literature of deterministic and

Las Vegas data structures not using LSH. As a baseline,

we note that the “brute force” algorithm that stores every

data point in a hash table, and given a query, q ∈ {0,1}d,

looks up every ∑r
k=1 (dk) point of Hamming distance most

r. This of course requires r log(d/r) < logn to be sub-

linear, and for a typical example of d = (logn)2 and

r = d/10 it won’t be practical. In [Cole et al., 2004] this

was somewhat improved to yield n(logn)r time, but it

still requires r = o( logn
log logn

) for queries to be sub-linear.

We can also imagine storing the nearest neighbour for

every point in {0,1}d. Such an approach would give fast

(constant time) queries, but the space required would be

exponential in r.

In Euclidean space (�2 metric) the classical K-d tree

algorithm [Bentley, 1975] is of course deterministic, but

it has query time n1−1/d, so we need d = O(1) for it to

be strongly sub-linear. Allowing approximation, but still

deterministically, [Arya et al., 1998] found a (d/(c−1))d

algorithm for a c > 1 approximation. This allows us to

set d = o( logn
log logn

).
For large approximation factors [Har-Peled et al.,

2012] gave a deterministic data structure with query

time O(d logn), but space and preprocessing more than

n ⋅ O(1/(c − 1))d. In a different line of work, [Indyk,

2000a] gave a deterministic (dε−1 logn)O(1) query time,

fully deterministic algorithm with space usage nO(1/ε6)

for a 3 + ε approximation.

See Table I for an easier comparison of the different

results and spaces.

C. Techniques

Our main new technique is a combination of ‘splitters’

as defined by [Naor et al., 1995, Alon et al., 2006], and

‘tensoring’ which is a common technique in the LSH

literature.

Tensoring means constructing a large space parti-

tion P ⊆ P(X) by taking multiple smaller random

partitions P1, P2, . . . and taking all the intersections

P = {p1 ∩ p2, . . . ∣ p1 ∈ P1, p2 ∈ P2, . . .}. Often the

implicit partition P is nearly as good as a fully random

partition of equal size, while it is cheaper to store in

memory and allows much faster lookups of which section

covers a given point. In this paper we are particularly

interested in Pi’s that partition different small sub-spaces,

such that P is used to increase the dimension of a small,

explicit, good partition.

Unfortunately tensoring doesn’t seem to be directly

applicable for deterministic constructions, since deter-

ministic space partitions tend to have some overhead

that gets amplified by the product construction. This is

the reason why [Pagh, 2016] constructs hash functions

directly using algebraic methods, rather than starting with

a small hash function and ‘amplifying’ as is common

for LSH. Algebraic methods are great when they exist,

but they tend to be hard to find, and it would be a tough

order to find them for every similarity measure we would

like to make a data structure for.

It turns out we can use splitters to help make tensoring

work deterministically. Roughly, these are generalizations

of perfect hash functions. However, where a (d,m, k)-
perfect hash family guarantees that for any set S ⊆ [d]
of size k, there is a function π ∶ [d] → [m] such that

∣π(S)∣ = k, a (d,m)-splitter instead guarantees that the is

some π such that ∣S∩π−1(i)∣ = d/m for each i = 1, . . . ,m;

or as close as possible if m does not divide d. That is,

for any S there is some π that ‘splits’ S evenly between

m buckets.

Using splitters with tensoring, we greatly limit the

number of combinations of smaller space partitions

that are needed to guarantee covering. We use this to

amplify partitions found probabilistically and verified
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Reference Space Exponent,
search time

Comments

[Bentley, 1975] �2 1 − 1/d Exact algorithm, Fully deterministic.

[Cole et al., 2004] Hamming r log logn
logn

Sub-linear for r < logn
log logn

. Exact.

[Arya et al., 1998] �2 d
log(d/(c−1))

logn
Sub-linear for d < logn

log logn
.

[Har-Peled et al., 2012] Hamming o(1) c-approximation, Fully deterministic, (1/(c − 1))d space.

[Indyk, 2000a] Hamming o(1) (3 + ε)-approximation, Fully deterministic, nΩ(1/ε6) space.

[Arasu et al., 2006] Hamming ≈ 3/c The paper makes no theoretical claims on the exponent.

[Pagh, 2016] Hamming 1.38/c Exponent 1/c when r = o(logn) or (logn)/(cr) ∈ N.

[Pacuk et al., 2016] �p O(d1−1/p/c) Sub-linear for �2 when c = ω(
√
d).

This paper Hamming 1/c Actual exponent is
1−cr/d

c(1−r/d)
which improves to 1/(2c − 1)

for cr ≈ d/2.

[Pagh, 2016] Braun-Blanquet 1.38 1−b1
1−b2

Via reduction to Hamming. Requires sets of equal weight.

This paper Braun-Blanquet
log 1/b1
log 1/b2

See [Pagh and Christiani, 2017] figure 2 for a comparison
with [Pagh, 2016].

TABLE I
COMPARISON OF LAS VEGAS ALGORITHMS FOR HIGH DIMENSIONAL NEAR NEIGHBOUR PROBLEMS. THE EXPONENT IS THE VALUE ρ, SUCH

THAT THE DATA STRUCTURE HAS QUERY TIME nρ+o(1) . ALL LISTED ALGORITHMS, EXCEPT FOR [INDYK, 2000A] USE LESS THAN n2 SPACE.
ALL ALGORITHMS GIVE c-APPROXIMATIONS, EXCEPT FOR THE FIRST TWO, AND FOR [INDYK, 2000A], WHICH IS A (3 + ε)-APPROXIMATION.

deterministically. The random aspect is however only for

convenience, since the greedy set cover algorithm would

suffice as well, as is done in [Alon et al., 2006]. We don’t

quite get a general reduction from Monte Carlo to Las

Vegas LSH data structures, but we show how two state

of the art algorithms may be converted at a negligible

overhead.

A final technique to make everything come together

is the use of dimensionality reductions. We can’t quite

use the standard bit-sampling and Johnson–Lindenstrauss

lemmas, since those may (though unlikely) increase

the distance between originally near points. Instead

we use two dimensionality reduction lemmas based on

partitioning. Similarly to [Pagh, 2016] and others, we fix

a random permutation. Then given a vector x ∈ {0,1}d
we permute the coordinates and partition into blocks

x1, . . . , xd/B of size B. For some linear distance function,

dist(x, y) = dist(x1, y1) + ⋅ ⋅ ⋅ + dist(xd/B , yd/B), which

implies that for some i we must have dist(xi, yi) ≤
dist(x, y)B/d. Running the algorithm separately for each

set of blocks guarantee that we no pair gets mapped too

far away from each other, while the randomness of the

permutation lets us apply standard Chernoff bounds on

how close the remaining points get.

Partitioning, however, doesn’t work well if distances

are very small, cr << d. This is because we need

B ≈ d/(cr)ε−2 logn to get the said Chernoff bounds

on distances for points at distance cr. We solve this

problem by hashing coordinates into buckets of ≈ cr/ε
and taking the xor of each bucket. This has the effect of

increasing distances and thereby allowing us to partition

into blocks of size ≈ ε−3 logn. A similar technique was

used for dimensionality reduction in [Kushilevitz et al.,

2000], but without deterministic guarantees. The problem

is tackled fully deterministically in [Indyk, 2000a] using

codes, but with the slightly worse bound of ε−4 logn.

In the process of showing our results, we show a useful

bound on the ratio between two binomial coefficients,

which may be of separate interest.

D. Notation

We use [d] = {1, . . . , d} as convenient notation sets

of a given size. Somewhat overloading notation, for a

predicate P , we also use the Iversonian notation [P ] for

a value that is 1 if P is true and 0 otherwise.

For a set x ⊆ [d], we will sometimes think of it as

a subset of the universe [d], and at other times as a

vector x ∈ {0,1}d, where xi = 1 indicates that i ∈ x. This

correspondence goes further, and we may refer to the

set size ∣x∣ or the vector norm ∥x∥, which is always the

Hamming norm, ∥x∥ = ∑d
i=1 xi. Similarly for two sets or

points x, y ∈ {0,1}d, we may refer to the inner product

⟨x, y⟩ = ∑d
i=1 xiyi or to the size of their intersection

∣x ∩ y∣.
We use S × T = {(s, t) ∶ s ∈ S, t ∈ T} for the cross

product, and x⊕ y for symmetric difference (or ‘xor’).

P(X) is the power set of X , such that x ⊆ X ≡ x ∈
P(X).

For at set S ⊆ [d] and a vector x ∈ {0,1}d, we let xS

be the projection of x onto S. This is an ∣S∣-dimensional

vector, consisting of the coordinates xS = ⟨xi ∶ i ∈ S⟩
in the natural order of i. For a function f ∶ [a] → [b]
we let f−1 ∶ P([b]) → P([a]) be the ‘pullback’ of f ,

such that f−1(S) = {i ∈ [a] ∣ f(i) ∈ S}. For example,
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for x ∈ {0,1}a, we may write xf−1(1) to be the vector x
projected onto the coordinates of f−1({1}).

Sometimes when a variable is ω(1) we may assume it

is integral, when this is achievable easily by rounding that

only perturbs the result by an insignificant o(1) amount.

The functional poly(a, b, . . . ) means any polynomial

combination of the arguments, essentially the same set

as (a ⋅ b . . . )±O(1).

E. Organization

We start by laying out the general framework shared

between our algorithms. We use a relatively common

approach to modern near neighbour data structures, but

the overview also helps establish some notation used in

the later sections.

The second part of section II describes the main ideas

and intuition on how we achieve our results. In particular

it defines the concept of ‘splitters’ and how they may be

used to create list-decodable codes for various measures.

The section finally touches upon the issues we encounter

on dimensionality reduction, which we can use to an

extent, but which is restricted by our requirement of

‘1-sided’ errors.

In sections III and IV we prove the main theorems from

the introduction. The sections follow a similar pattern:

First we introduce a filter family and prove its existence,

then we show a dimensionality reduction lemma and

analyze the resulting algorithm.

II. OVERVIEW

Both algorithms in this paper follow the structure of the

Locality Sensitive Filter framework, which is as follows:

For a given universe U , we define a family F of ‘filters’

equipped with a function F ∶ U → P(F), which assigns

every point a set of filters.

Typically, F will be a covering of U , and F (x) will

be the sets that cover the point x. Intuitively we want

points that share a filter to be close/similar, and we want

points that are sufficiently close/similar to always share a

filter. There will usually also be some non-similar points

in a particular filter. To get good expected performance,

some randomness, such as a rotation that does not change

distances, is performed to make this only happen with

low probability.

To construct the data structure, we are given a set of

data points P ⊆ U . We compute F (x) for every x ∈ P
and store the points in a (hash) map T ∶ F → P(P ). For

any point x ∈ P and filter f ∈ F (x), we store x ∈ T [f].
Note that the same x may be stored in multiple different

buckets.

To query the data structure with a point x ∈ U , we

compute the distance/similarity between x and every point

y ∈ ⋃f∈F (x) T [f], returning the first suitable candidate,

if any.

There are many possible variations of the scheme, such

as sampling F from a distribution of filter families. In

case we want a data structure with space/time trade-offs,

we can use different F functions for data points and

query points. However in this article we will not include

these extensions.

We note that while it is easy to delete and insert new

points in the data structure after creation, we are going

to choose F parametrized on the total number of points,

∣P ∣. This makes our data structure essentially static, but

luckily [Overmars and van Leeuwen, 1981] have found

general, deterministic reductions from dynamic to static

data structures.

A. Intuition

The main challenge in this paper will be the con-

struction of filter families F which are: (i) not too

large; (ii) have a F (⋅) function that is efficient to

evaluate; and most importantly, (iii) guarantee that all

sufficiently close/similar points always share a filter. The

last requirement is what makes our algorithm different

from previous results, which only had this guarantee

probabilistically.

For concreteness, let us consider the Hamming space

problem. Observe that for very low dimensional spaces,

d = (1 + o(1)) logn, we can afford to spend exponential

time designing a filter family. In particular we can

formulate a set cover problem, in which we wish to

cover each pair of points at distance ≤ r with Hamming

balls of radius s. This gives a family that is not much

larger than what can be achieved probabilistically, and

which is guaranteed to work. Furthermore, this family has

sublinear size (no(1)), making F (x) efficient to evaluate,

since we can simply enumerate all of the Hamming balls

and check if x is contained.

The challenge is to scale this approach up to general

d.

Using a standard approach of randomly partitioning the

coordinates, we can reduce the dimension to (logn)1+ε.
This is basically dimensionality reduction by bit sampling,

but it produces d/ logn different subspaces, such that for

any pair x, y there is at least one subspace in which

their distance is not increased. We are left with a gap

from (logn)1+ε down to logn. Bridging this gap turns

out to require a lot more work. Intuitively we cannot

hope to simply use a stronger dimensionality reduction,

since logn dimensions only just fit n points in Hamming

space and would surely make too many non-similar points

collide to be effective.

A natural idea is to construct higher-dimensional filter

families by combining multiple smaller families. This is

a common technique from the first list decodable error

correcting codes, for example [Elias, 1957]: Given a code

C ⊆ {0,1}d with covering radius r, we can create a new
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code C2 ⊆ {0,1}2d of size ∣C∣2 with covering radius 2r by

taking every pair of code words and concatenating them.

Then for a given point x ∈ {0,1}2d we can decode the first

and last d coordinates of x = x1x2 separately in C. This

returns two code words c1, c2 such that dist(x1, c1) ≤ r
and dist(x2, c2) ≤ r. By construction c1c2 is in C2 and

dist(x1x2, c1c2) ≤ 2r.

This combination idea gives is nice when it applies.

When used with high quality inner codes, the combined

code is close to optimal as well. In most cases the

properties of C that we are interested in won’t decompose

as nicely. With the example of our Hamming ball

filter family, consider x, y ∈ {0,1}2d with distance

dist(x, y) = r. If we split x = x1x2 an y = y1y2
we could decode the smaller vectors individually in a

smaller family, however we don’t have any guarantee on

dist(x1, y1) and dist(x2, y2) individually, so the inner

code might fail to return anything at all.

To solve this problem, we use a classic tool for creating

combinatorial objects, such as our filter families, called

‘splitters’. Originally introduced by [Mairson, 1983, Naor

et al., 1995] they are defined as follows:

Definition 3 (Splitter). A (B, l)-splitter H is a family of
functions from {1, . . . ,B} to {1, . . . , l} such that for all
S ⊆ {1, . . . ,B}, there is a h ∈H that splits S perfectly,
i.e., into equal-sized parts h−1(j)∩S, j = 1,2, . . . , l. (or
as equal as possible, if l does not divide ∣S∣).

The size of H is at most Bl, and using either

a generalization by [Alon et al., 2006] or a simple

combinatorial argument, it is possible to ensure that the

size of each part ∣h−1(j)∣ equals B/l (or as close as

possible).

We now explain how splitters help us combine filter

families. Let H be a splitter from {1, . . . ,2d} to {1,2}.
For any x, y ∈ {0,1}2d we can let S be the set of coordi-

nates on which x and y differ. Then there is a function

h ∈H such that ∣h−1(1) ∩ S∣ = ∣h−1(2) ∩ S∣ = ∣S∣/2. (Or

as close as possible if ∣S∣ is odd.) If we repeat the failed

product combination from above for every h ∈ H we

get a way to scale our family from d to 2d dimensions,

taking the size from ∣F∣ to (2d)2∣F∣2. That is, we only

suffer a small polynomial loss. In the end it turns out

that the loss suffered from creating filter families using

this divide and conquer approach can be contained, thus

solving our problem.

An issue that comes up, is that the ‘property’ we are

splitting (such as distance) can often be a lot smaller

than the dimensionality d of the points. In particular this

original dimensionality reduction may suffer an overhead

factor d/∣S∣, which could make it nearly useless if ∣S∣
is close to 1. To solve this problem, both of our algo-

rithms employ special half-deterministic dimensionality

reductions, which ensures that the interesting properties

get ‘boosted’ and end up taking a reasonable amount of

‘space’. These reductions are themselves not complicated,

but they are somewhat non-standard, since they can only

have a one sided error. For example for Hamming distance

we need that the mapped distance is never larger than

its expected value, since otherwise we could get false

negatives.

For Hamming distance our dimension reduction works

by hashing the coordinates randomly from [d] to [m]

taking the xor of the coordinates in each bucket. This is

related to the β-test in [Kushilevitz et al., 2000]. The idea

is that if x and y are different in only a few coordinates,

then taking a small random group of coordinates, it is

likely to contain at most one where they differ. If no

coordinates differ, then after taking the xor the result will

still be the same, but if exactly one (or an odd number)

of coordinates differ, the resulting coordinate will be

different.

For set similarity it turns out that we need less

dimensionality reduction and simple partitioning suffices.

This is due to the verification algorithm being efficient

when sets have small similarity, while partitioning works

well when the similarity is large.

III. HAMMING SPACE DATA STRUCTURE

We will give an efficient filter family for LSF in Ham-

ming space. Afterwards we will analyze it and choose

the most optimal parameters, including dimensionality

reduction.

Lemma 1. For every choice of parameters B, b ∈ N, b B,
0 < r < B/2 and s2 = O(B/

√
b), there exists a code

C ⊆ {0,1}B of size ∣C∣ = poly(BB/b) exp( s2

2(1−r/d)) with
the following properties:

1) Given x ∈ {0,1}B we can find a subset
C(x) ⊆ {c ∈ C ∶ dist(x, c) ≤ B/2 − s

√
B/2}

in time ∣C(x)∣ + poly(BB/b, es
2b/B).

2) For all pairs x, y ∈ {0,1}B with dist(x, y) ≤ r there
is some common nearby code word c ∈ C(x)∩C(y).

3) The code requires 4b poly(BB/b, es
2b/B) time for

preprocessing and poly(BB/b, es
2b/B) space.

Note that we don’t actually guarantee that our ‘list-

decoding’ function C(x) returns all nearby code words,

just that it returns enough for property (2) to hold. (This

is just to make the proof a bit shorter though; using a

decoding algorithm similar to [Becker et al., 2016] would

change this.)

Proof: We first show how to construct a family for

{0,1}b, then how to enlarge it for {0,1}B . We then show

that it has the covering property and finally the decoding

properties. In order for our probabilistic arguments to go

through, we need the following lemma, which follows

from Stirling’s Approximation:
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Lemma 2. For t = d
2
− s

√
d

2
, 1 ≤ s = O(d1/4) and r < d/2,

Let x, y ∈ {0,1}d be two points at distance dist(x, y) = r,
and let I = ∣{z ∈ {0,1}d ∶ dist(z, x) ≤ t,dist(z, y) ≤ t}∣
be the size of the intersection of two hamming balls
around x and y of radius t, then

I 2−d = poly(d) exp ( −s2
2(1−r/d)) . (1)

Let s′ = s
√
b/B. Consider any two points x, y ∈ {0,1}b

with distance ≤ (r/d)b. If we choose a ∈ {0,1}b
uniformly at random, by lemma 2 we have probability

p = poly(b) exp( −s′2

2(1−r/d)) that both x and y have

distance at most t = b/2 − s′
√
b/4 with c. By the union

bound over pairs in {0,1}b, if we sample p−1b log 2
independent as, we get constant probability that some

a works for every pair. We can verify that a set A of

such filters indeed works for every pair in time 4b∣A∣. By

repeatedly sampling sets A and verifying them, we get a

working A in expected O(1) tries.1

Next we define C. We build a splitter, that is a set Π
of functions π ∶ [B] → [B/b], such that for every set

I ⊆ [B] there is a π ∈ Π such that ⌊∣I ∣b/B⌋ ≤ ∣π−1(j) ∩
I ∣ ≤ ⌈∣I ∣b/B⌉ for j = 1, . . . ,B/b. By the discussion after

definition 3, such a set of size poly(BB/b) exists and

can be constructed in time and space proportional to its

size. Implicitly we can then define C by making one code

word c ∈ {0,1}B for every π ∈ Π and 1 ≤ j1, . . . , jB/b ≤
∣A∣, satisfying the requirement that cπ−1(jk) = Ajk for

k = 1 . . .B/b. That is, for a given set of rows of A
and a split of [B], we combine the rows into one row

c such that each row occupies a separate part of the

split. Note that this is possible, since splitter has all

partitions of equal size, b. The created family then has size

∣C∣ = ∣Π∣∣A∣B/b = poly(BB/b) exp( −s2
2(1−r/d)) as promised.

Since the only explicit work we had to do was finding

A, we have property (3) of the lemma.

We define the decoding function C(x) ∈ C for

x ∈ {0,1}B with the following algorithm: For each

π ∈ Π compute the inner decodings Aj = {a ∈ A ∶
dist(xπ−1(j), a) ≤ b/2 − s

√
b/2} for j = 1, . . . ,B/b.

Return the set of all concatenations in the product of

the Aj’s: C(x) = {a1∥a2∥ . . . ∥aB/b ∶ a1 ∈ A1, . . .}.
Computing the Aj’s take time (B/b)∣A∣, while computing

and concatenating the product takes linear time in the

size of the output. This shows property (1).

Finally for property (2), consider a pair x, y ∈ {0,1}B
of distance ≤ r. Let I be the set of coordinates on which

x and y differ. Then there is a function π ∈ Π such that x
and y differ in at most ∣I ∣b/B = rb/B coordinates in each

subset π−1(1), . . . , π−1(B/b) ⊆ [B]. Now for each pair

1The randomness is not essential, and we could as well formulate
a set cover instance and solve it using the greedy algorithm, which
matches the probabilistic construction up to a log factor in size and
time.

of projected vectors xπ−1(1), yπ−1(1), . . . (let’s call them

x1, y1, . . . ) there is an aj ∈ A such that dist(aj , xj) ≤
b/2 − s′

√
b/2 and dist(aj , yj) ≤ b/2 − s′

√
b/2. This

means that x and y must both have distance at most

(b/2 − s′/2)B/b = B/2 − s
√
B/2 to that c ∈ C which has

cπ−1(j) = aj for j = 1 . . .B/b. By the same reasoning,

this c will be present in both C(x) and C(y), which

proves the lemma.

Returning to the problem of near neighbour search in

{0,1}d, it is clear from the 4b poly(BB/b) construction

time of the above family, that it will not be efficient for

dimension B = (logn)ω(1). For this reason we will apply

the following dimensionality reduction lemma:

Lemma 3. For n > d, ε = ε(n) > 0, cr > r ≥ 1 and
some B = 27ε−3 logn, assume n ≥ m = 3cr/ε, then
there is a random set F of at most S =m/B functions
f ∶ {0,1}d → {0,1}B with the following properties for
every x, y ∈ {0,1}d:

1) With probability 1, there is at least one f ∈ F st.:

dist(f(x), f(y)) ≤ dist(x, y)/S.

2) If dist(x, y) ≥ cr then for every f ∈ F with
probability at least 1 − 1/n:

dist(f(x), f(y)) ≥ (1 − ε)cr/S.

Proof: To prove lemma 3 first notice that if B ≥ d we

can use the identity function and we are done. If B ≥m,

then we can duplicate the vector ⌈m/B⌉ = O(ε−2 logn)
times. Also, by adjusting ε by a constant factor, we can

assume that B divides m.

For the construction, pick a random function h ∶
[d] → [m]. Define g ∶ {0,1}d → {0,1}m by ‘xor’ing

the contents of each bucket, g(x)i = ⊕j∈h−1(i) xj , and

let fi(x) = g(x)(iB,(i+1)B] for i = 0 . . .m/B be the set

of functions in the lemma. We first show that this set has

property (1) and then property (2).

Observe that g never increases distances, since for any

x, y ∈ {0,1}d the distance

dist(g(x), g(y)) =
m

∑
i=1

⎡⎢⎢⎢⎢⎣
⊕

j∈h−1(i)
xj ≠ ⊕

j∈h−1(i)
yj

⎤⎥⎥⎥⎥⎦
is just ∑m

i=1 (∑j∈h−1(i)[xj ≠ yj]mod 2) which is upper

bounded by the number of coordinates at which x
and y differ. By averaging, there must be one fi
such that dist(fi(x), fi(x)) ≤ dist(g(x), g(y))B/m ≤
dist(x, y)/S.

For the second property, let R = dist(x, y) ≥ cr
and let X1, . . . ,Xm be the random number of differ-

ences between x and y in each bucket under h. Let

Y1, . . . , Ym be iid. Poisson distributed variables with

mean λ = EX1 = R/m ≥ ε/3. We use the the Poisson
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trick from [Mitzenmacher and Upfal, 2005] theorem 5.7:

Pr[
B

∑
i=1
(Xi mod 2) < x] ≤ e

√
mPr[

B

∑
i=1
(Yi mod 2) < x]

and notice that (Yi mod 2) ≥ [Yi = 1], such that the

rhs. sum is bounded by a binomial ∼ Bin(B,p) with

p = Pr[Y1 = 1] = λe−λ ≥ λ(1 − λ). We can then bound

the probability of an fi decreasing distances too much,

using a Chernoff bound:

Pr[dist(fi(x), fi(y)) ≤ (1 − ε)cr/S]
≤ e
√
m exp(−D[(1 − ε)ε/3 ∣ (1 − ε/3)ε/3]B)

≤ e
√
m exp(−2ε3B/27).

Since cr/S = crB/m = Bε/3. Here D[α ∣ β] = α log α
β
+

(1 − α) log 1−α
1−β is the Kullback–Leibler divergence. For

our choice of B the error probability is then e
√
m/n2

which is less than 1/n by our assumptions. This proves

the lemma.

Using lemma 3 we can make at most 3cr/ε = O(d/ε)
data structures, as described below, and be guaranteed

that in one of them, we will find a near neighbour at

distance r′ = r/S = ε/(3c)B. In each data structure we

will have to reduce the distance cr′, at which we expect

far points to appear, to cr′(1 − ε). This ensures we see

at most a constant number of false positives in each data

structure, which we can easily filter out. For ε = o(1)
this change be swallowed by the approximation factor c,
and won’t significantly impair our performance.

When using the filter family of lemma 1 for LSF, the

time usage for queries and inserting points is dominated

by two parts: 1) The complexity of evaluating C(x), and

2) The expected number of points at distance larger than

cr′(1 − ε) that falls in the same filter as x.

Since lemma 3 randomly shuffled the coordinates, we

can assume that x is a random point in {0,1}d. The

expected time to decode C(x) is then

E ∣C(x)∣ + poly(BB/b, es
2b/B)

= ∣C∣Pr
x
[0 ∈ C(x)] + poly(BB/b, es

2b/B)

≤ poly(BB/b, es
2b/B) exp ( s2

2(1−r′/B) −
s2

2
) .

For estimating collisions with far points, we can

similarly assume that x and y are random points in

{0,1}d with fixed distance cr′(1 − ε):

E ∣{y ∈ P ∶ C(x) ∩C(y) ≠ ∅}∣
≤ n ∣C∣ Pr

x,y
[0 ∈ C(x),0 ∈ C(y)]

≤ BO(B/b) exp ( s2

2(1−r′/B) −
s2

2(1−c(1−ε)r′/B) + logn)

= BO(B/b) exp ( s2
2
( 1
1−r′/B −

1
1−cr′/B +O(ε)) + logn) .

Finally we should recall that constructing the data

structures takes time 4b poly(es2b/B) plus n inserts.

We now choose the parameters:

s2/2 = 1−cr′/B
cr′/B logn, B = 27ε−3 logn,

b = log4 n, ε = (logn)−1/4.

This makes the code construction time n1+o(1) while

evaluating C(x) and looking at far points takes expected

time at most n1/c+Õ(logn)−1/4

. To use lemma 1 we have

to check that s2 = O(B/
√
b) = O((logn)5/4), but s2/2 =

1−ε/3
ε/3 logn = (logn)5/4(1 − o(1)) so everything works

out. This shows theorem 1.

To get the result of corollary 1, we just need to

substitute the dimensionality reduction lemma 3 for a

simple partitioning approach:

Lemma 4. For any d ≥ r ≥ 1 and ε > 0 there is a
set F of d/B functions, f ∶ {0,1}d → {0,1}B , where
B = 2ε−2d/(cr) logn, such that:

1) With probability 1, there is at least one f ∈ F st.:

dist(f(x), f(y)) ≤ dist(x, y)B/d.

2) If dist(x, y) ≥ cr then for every f ∈ F with
probability at least 1 − 1/n:

dist(f(x), f(y)) ≥ (1 − ε)crB/d.

Proof: Fix a random permutation. Given x ∈ {0,1}d,

shuffle the coordinates using the permutation. Let f1(x)
be the first B coordinates of x, f2(x) the next B coor-

dinates and so forth. For any y ∈ {0,1}d, after shuffling,

the expected number of differences in some block of

B coordinates is dist(x, y)B/d. Then the first property

follows because ∑i dist(fi(x), fi(y)) = dist(x, y) so

not all distances can be below the expectation. The

second property follows from the Chernoff/Hoeffding

bound [Hoeffding, 1963].

That is, we randomly partition the d coordinates in B
parts and run the algorithm on those. The important point

is that in this case r′/B = r/d, so the relative distance is

not decreased. We choose parameters

s2/2 = 1−cr/d
cr/d logn B = O(ε−2(cr/d)−1 logn),

b = log4 n, ε = (logn)−1/3.

This again makes this makes the code construction

time n1+o(1) while evaluating C(x) and looking at

far points takes time n
1−cδ
c(1−δ)+Õ(logn)

−1/3d/r
as in the

corollary. Again we need need to check that s2 =
O(B/

√
b) = O((logn)7/6). This works as long as

r/d = Ω((logn)−1/6), which is the assumption of the

corollary.
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IV. SET SIMILARITY DATA STRUCTURE

The structure of the algorithm follows the LSF frame-

work as in the previous section. We will try to follow the

same structure of presenting a filter family, then analyze

it with a simple dimensionality reduction, and then iron

out remaining kinks.

One technicality is that we will assume the weight of

the query points ∥q∥ and any data point ∥x∥ are known in

advance. This can be accomplished by making (d + 1)2
data structures, saving each point in d + 1 of them and

querying d + 1 of them for each query. For each such

data structure we define t =max(tq, tx).
If we are trying to solve the (s1, s2)-approximate

similarity search problem for our particular weight pair

tq, tx, then the inner product between the query and the

‘close’ data points we are interested in is at least s1t,
while the inner product between the query and the ‘far’

points we are not interested in is at most s2t.

A good filter family for set similarity turns out to be

the r-element blocks of a Turán system:

Definition 4 ([Turán, 1961, Colbourn and Dinitz, 2006]).
A Turán (n, k, r)-system is a collection of r-element
subsets, called ‘blocks’, of an n element set X such that
every k element subset of X contains at least one of the
blocks.

This choice is inspired by [Pagh and Christiani, 2017],

and is generally well studied. However none of the known

constructions are explicit, and they don’t seem to allow

us to avoid false negatives. The lemma below provides

one such construction.

Lemma 5. For every B ≥ b, k, r, there ex-
ists a Turán (B,k, r)-system, T , of size ∣T ∣ ≤
poly(BB/b, er

2/k) (B/k)r with the following properties:

1) Efficient decoding: Given a set S ⊆ [B], we can find
all the blocks it contains T (S) = {R ∈ T ∶ R ⊆ S}
in time ∣T (S)∣ + poly(BB/b, er

2/k b/B , (B/k)rb/B).
2) Correctness: For every set K ⊆ [B] of size at least

k, there is at least one block R ∈ T such that R ⊆K.
3) Efficient construction: The code is constructible,

implicitly, in poly(BB/b, er
2/k)(eB/k)kb/B time

and space.

A simple volume lower bound shows that an (n, k, r)-
system must have at least (n

r
)/(n

k
) ≥ (n/k)r blocks,

making our construction optimal up to polynomial factors.

Proof: As in the previous section, we first show how

to construct a family for [b], then how to extend it to

[B]. Finally we show correctness of the fast decoding

algorithm.

To bound some of the probabilities, we will need the

following lemma:

Lemma 6. For all n ≥m ≥ k ≥ 0

( n
m
)
k

≤ (n
k
)/(m

k
) ≤ ( n

m
)
k

ek
2/m.

Proof: For the lower bound, (n
k
)/(m

k
) = ∏k−1

i=0
n−i
m−i ≥

∏k−1
i=0

n
m
= ( n

m
)k, since n−i

m−i is increasing in i. For the

upper bound we use the sum/integral inequality to show

(n
k
)/(m

k
) = exp(Σk−1

i=0 log n−i
m−i)

≤ exp(
k

∫
0
log n−x

m−xdx)

= exp(nH(k/n) −mH(k/m))
≤ ( n

m
)k exp(k2

2
( 1
m−k/2 −

1
n
))

≤ ( n
m
)k exp(k2

m
).

Here H(x) = x log 1/x + (1 − x) log 1/(1 − x) and we

used the log-inequalities 2x/(2+x) ≤ log(1+x) ≤ x(2+
x)/(2 + 2x) from [Topsøe, 2006].

We now continue the proof of lemma 5. Let r′ = rb/B
and k′ = kb/B. Probabilistically we can build a Turán

(b, k′, r′)-system, T ′, by sampling

m = ( b
r′)/(k

′

r′)(1 + log ( bk′))

independent size r′-sets. For any size k′ subset, K,

the probability that it contains none of the r′-sets is

(1 − (k
′

r′)/( br′))
m
≤ e−1/( b

k′). Hence by the union bound

there is constant probability that all k′-sets contain an

r′-set, making our T ′ a valid system.

We can test the correctness of the system in

m( b
k′) ≤ poly(er

′2/k′

)(b/k′)r
′

(eb/k′)k
′

= poly(er
2/k b/B , (B/k)rb/B)(eB/k)kb/B

time, where we used the bound on m from lemma 6.

To scale up the system, we again take a set Π of

functions πi ∶ [B] → [B/b] such that for any set I ⊆ [B]
there is a πi ∈ Π such that

∣π−1i (j) ∩ I ∣ = ∣I ∣b/B for j = 1, . . . ,B/b.

When using combining subsets of [b] or [B] it is useful

to think of them as binary indicator vectors in {0,1}b or

{0,1}B . For each i and distinct k1, . . . , kB/b ∈ [m] we

then make an r-set R ∈ {0,1}B such that Rπ−1
i (j) = T ′kj

for j = 1 . . .B/b. The created family has size ∣T ∣ =
∣Π∣mB/b = poly(BB/b, er

2/k)(B/k)r as we wanted.

We now show correctness. For this, consider any k-

set K ⊆ [B]. We need to show that there is some r-

set R ∈ T such that R ⊆ K. By construction of Π,

there is some πi ∈ Π such that ∣π−1i (j) ∩K ∣ = k′ for all

j = 1, . . . ,B/b. Considering K as an indicator vector, we

look up Kπ−1
i (1), . . . ,Kπ−1

i (B/b) in T ′, which gives us

B/b disjoint r′-sets, R′
1, . . . ,R

′
B/b. By construction of T
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there is an R ∈ T such that Rπ−1
i (j) = R′

j . Since R ⊆K
we have proven T to be a correct (B,k, r)-system.

Decoding T is fast, since we only have to do ∣Π∣ times

B/b enumerations of T ′. When evaluating T (K) we

make sure we return every r-set in K. Hence we return

the entire “cross product” of unions:

T (K) = ⋃
i

{R1 ∪ ⋅ ⋅ ⋅ ∪RB/b ∶

R1 ∈ T ′(Kπ−1
i (1)),R2 ∈ . . .}.

In total this takes time ∣T (K)∣ + ∣Π∣(B/b)m = ∣T (K)∣ +
poly(BB/b, er

2/k b/B , (B/k)rb/B), which was the last

thing we needed to show lemma 5.

Before we apply the filter family to the problem, we

will do dimensionality reduction by partitioning, as in

the proof of corollary 1. In particular we use 4 with

B = 2ε−2d/(b2t) logn, so that we may assume far points

have inner product at most (1 + ε)b2tB/d, all sets have

size at most (1+ ε)tB/d and for any close pair of points

there is one partition in which they have inner product

at least b1tB/d.

As in the analysis in the previous section, the time

usage for queries and inserting points is dominated by

two parts: 1) The complexity of evaluating T (x), and

2) The expected number of sets with inner product less

than b2t(1 + ε) that fall in the same filter as x.

Since lemma 4 randomly shuffled the coordinates, we

can assume that x is a random weight (1 + ε)tB/d set.

The expected time to decode C(x) is then

E ∣T (x)∣ = ∑
R∈T

Pr
x
[R ⊆ x]

= ∣T ∣((1+ε)tB/d
r
)/(B

r
)

≤ poly(BB/b, er
2/k, eεr)(tB/(dk))r

For estimating collisions with far points, we can similarly

assume that x and y are random sets with inner product

at most (1 + ε)b2tB/d.

∑
Y ∈P

E
x,y
∣{R ∈ T ∶ R ∈ x ∩ y}∣

= n∣T ∣((1+ε)b2tB/d
r

)/(B
r
)

≤ poly(BB/b, er
2/k, erε)n(b2tB/(dk))r

And finally we have from the lemma, that the system

needs poly(BB/b, er
2/k)(eB/k)kb/B preprocessing.

We choose the parameters:

r = logn
log(1/b2) , B = 2ε−2d/(b2t) logn, k = b1tB/d,

b = d logn/(b1t log(eB/k), ε = (b1/b2)1/3(logn)−1/3

such that (tB/(dk))r = n(b2tB/(dk)) = nlog b1/ log b2 ,

and the Turán system preprocessing is (eB/k)kb/B = n.

Furthermore, the overhead terms are small:

BB/b = e(b1/b2)
1/3(logn)2/3 log(B) log(B/k) = nÔ((logn)−1/3),

erε = e(b1/b2)
1/3(logn)2/3/ log(1/b2) = nÔ((logn)−1/3),

er
2/k = nÔ(logn)−2/3

.

By the reduction mentioned in the beginning of the

section, we make a data structure like the above for each

of (d+ 1)2 possible sizes for query and data sets. Hence

the final construction takes space O(d2 nρ+o(1)) and has

query time O(d2 nρ+o(1)), which is theorem 2.

V. CONCLUSION AND OPEN PROBLEMS

We have seen that, perhaps surprisingly, there exists

a relatively general way of creating efficient Las Vegas

versions of state-of-the art high-dimensional search data

structures.

As tools we found efficient, explicit constructions of

large Turán systems and covering codes for pairs. We also

showed an efficient way to do dimensionality reduction

in hamming space without false negatives.

The work leaves a number of open questions for further

research:

1) Can we make a completely deterministic high-

dimensional data structure for the proposed problems?

Cutting the number of random bits used for Las

Vegas guarantees would likewise be interesting. The

presented algorithms both use O(d log d) bits, but

perhaps limited independence could be used to show

that O(log d) suffice?

2) Does there exist Las Vegas data structures with

performance matching that of data-dependent LSH

data structures? This might connect to the previous

question, since a completely deterministic data struc-

ture would likely have to be data-dependent. However

the most direct approach would be to repeat [Andoni

et al., 2017b], but find Las Vegas constructions for

the remaining uses of Monte Carlo randomness, such

as clustering.

3) By reductions, our results extend to �2 and �1 with

exponent n1/c. This is optimal for �1, but for �2
we would hope to get n1/c2 . Can our techniques be

applied to yield such a data structure? Are there other

interesting LSH algorithms that can be made Las

Vegas using our techniques? The author conjectures

that a space/time trade-off version of the presented

algorithm should follow easily following the approach

of [Andoni et al., 2017b, Laarhoven, 2015, Christiani,

2017].

4) In the most general version, we we get the overhead

term (logn)−1/4 in our ρ value. Some previous

known LSH data structures also had large terms,

such as [Andoni and Indyk, 2006], which had a

(logn)−1/3 term and [Andoni et al., 2017b], which
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has (log logn)−Θ(1), but in general most algorithms

have at most a (logn)−1/2 term.

Can we improve the overhead of the approach given

in this paper? Alternatively, is there a completely

different approach, that has a smaller overhead?

5) Finally, our data structure for the set-similarity search

problem has a factor (b1/b2)1/3 in its overhead term.

This could potentially be a problem in cases where

b1 >> b2, so it would be highly interesting to get rid

of it. In the approach of this framework, that could

happen either by finding a faster way to verify a Turán

system, or by finding a more clever dimensionality

reduction to apply as we did for Hamming distance.
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