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Abstract—We give a deterministic Õ(log n)-space algorithm
for approximately solving linear systems given by Laplacians
of undirected graphs, and consequently also approximating
hitting times, commute times, and escape probabilities for
undirected graphs. Previously, such systems were known to
be solvable by randomized algorithms using O(logn) space
(Doron, Le Gall, and Ta-Shma, 2017) and hence by determin-
istic algorithms using O(log3/2 n) space (Saks and Zhou, FOCS
1995 and JCSS 1999).

Our algorithm combines ideas from time-efficient Laplacian
solvers (Spielman and Teng, STOC ‘04; Peng and Spielman,
STOC ‘14) with ideas used to show that UNDIRECTED S-T
CONNECTIVITY is in deterministic logspace (Reingold, STOC
‘05 and JACM ‘08; Rozenman and Vadhan, RANDOM ‘05).

Keywords-space complexity; derandomization; expander
graphs; spectral sparsification; random walks; linear systems

I. INTRODUCTION

A. The RL vs. L Problem

One of the central problems in computational complexity

is to understand the power of randomness for efficient

computation. There is strong evidence that randomness does

not provide a substantial savings for standard algorithmic

problems, where the input is static and the algorithm has

time to access it in entirety. Indeed, under widely believed

complexity assumptions (e.g. that SAT has circuit complex-

ity 2Ω(n)), it is known that every randomized algorithm can

be made deterministic with only a polynomial slowdown

(BPP = P, RP = P) and a constant-factor increase in

space (BPL = L, RL = L) [1], [2].

A major challenge is to prove such derandomization

results unconditionally, without relying on unproven com-

plexity assumptions. In the time-bounded case, it is known

that proving that RP = P requires progress on circuit

lower bounds [3], [4]. But for the space-bounded case,

there are no such barriers, and we can hope for an un-

conditional proof that RL = L. Indeed, Nisan [5] gave

an unconditional construction of a pseudorandom generator

for space-bounded computation with seed length O(log2 n),
which was used by Saks and Zhou [6] to prove that

RL ⊆ SPACE(log3/2 n)
def
= L3/2. Unfortunately, despite

much effort over the past two decades, this remains the best

known upper bound on the deterministic space complexity

of RL.

For many years, the most prominent example of a problem

in RL not known to be in L was UNDIRECTED S-T

CONNECTIVITY, which can be solved in randomized log-

arithmic space by performing a polynomial-length random

walk from the start vertex s and accepting if the destination

vertex t is ever visited [7]. In 2005, Reingold [8] gave

a deterministic logspace algorithm for this problem. Since

UNDIRECTED S-T CONNECTIVITY is complete for SL
(symmetric logspace) [9], this also implies deterministic

logpsace algorithms for several other natural problems, such

as BIPARTITENESS [10], [11].

Reingold’s algorithm provided hope for renewed progress

on the general RL vs. L problem. Indeed, it was shown in

[12] that solving S-T connectivity on directed graphs where

the random walk is promised to have polynomial mixing

time (and where t has noticeable stationary probability) is

complete for RL (generalized to promise problems). While

[12] was also able to generalize Reingold’s methods to

Eulerian directed graphs, the efforts to handle all of RL
with this approach stalled. Thus, researchers turned back to

constructing pseudorandom generators for more restricted

models of space-bounded computation, such as various types

of constant-width branching programs [13], [14], [15], [16],

[17], [18], [19], [20], [21].

B. Our Work

In this paper, we restart the effort to obtain deterministic

logspace algorithms for increasingly rich graph-theoretic

problems beyond those known to be in SL. In particular,

we provide a nearly logarithmic space algorithm for ap-

proximately solving UNDIRECTED LAPLACIAN SYSTEMS,

which also implies nearly logarithmic-space algorithms for

approximating hitting times, commute times, and escape

probabilities for random walks on undirected graphs.

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.79

801



Our algorithms are obtained by combining the techniques

from recent nearly linear-time Laplacian solvers [22], [23]

with methods related to Reingold’s algorithm [24]. The body

of work of time-efficient Laplacian solvers has recently been

extended to Eulerian directed graphs [25], which in turn

was used to obtain algorithms to approximate stationary

probabilities for arbitrary directed graphs with polynomial

mixing time through recent reductions [26].

This raises the tantalizing possibility of extending our

nearly logarithmic-space Laplacian solvers in a similar way

to prove that RL ⊆ L̃
def
= SPACE(Õ(log n)), since ap-

proximating stationary probabilities on digraphs with poly-

nomial mixing time suffices to solve all of RL [12], [27],

and Reingold’s algorithm has been extended to Eulerian

digraphs [12], [24].

C. Laplacian system solvers

Given an undirected multigraph G with adjacency matrix

A and diagonal degree matrix D, the Laplacian of G is the

matrix L = D − A. Solving systems of equations Lx = b
in the Laplacians of graphs (and in general symmetric

diagonally dominant systems) arises in many applications

throughout computer science. In a seminal paper, Spielman

and Teng gave a nearly linear time algorithm for solving

such linear systems [22], which was improved in a series of

follow up works [28], [29], [30], [23], [31] including recent

extensions to directed graphs [26], [25]. These methods have

sparked a large body of work using Laplacian solvers as

an algorithmic primitive for problems such as max flow

[32], [33], randomly sampling spanning trees [34], sparsest

cut [35], graph sparsification [36], as well as problems in

computer vision [37].

Recent works have started to study the space complexity

of solving Laplacian systems. Ta-Shma [38] gave a quan-
tum logspace algorithm for approximately solving general

linear systems that are suitably well-conditioned. Doron, Le

Gall, and Ta-Shma [39] showed that there is a randomized
logspace algorithm for approximately solving Laplacian

systems on digraphs with polynomial mixing time.

D. Main Result

We give a nearly logarithmic-space algorithm for approx-

imately solving undirected Laplacian systems:

Theorem I.1. There is a deterministic algorithm that, given
an undirected multigraph G = (V,E) specified as a list of
edges, a vector b ∈ Q|V | in the image of G’s Laplacian
L, and an approximation parameter ε > 0, finds a vector
x ∈ Q|V |, such that

‖x− x∗‖ ≤ ε · ‖x∗‖
for some x∗ such that Lx∗ = b, in space

O (log n · log log(n/ε)) ,

where n is the bitlength of the input (G, b, ε).

In particular, for ε = 1/poly(n), the algorithm uses

space Õ(log n). Note that since the algorithm applies to

multigraphs (represented as edge lists), we can handle poly-

nomially large integer edge weights. Known reductions [26]

imply the same space bounds for estimating hitting times,

commute times, and escape probabilities for random walks

on undirected graphs. (See Section VIII.)

E. Techniques

The starting point for our algorithm is the undirected

Laplacian solver of Peng and Spielman [23], which is

a randomized algorithm that uses polylogarithmic parallel

time and a nearly linear amount of work. (Interestingly,

concurrently and independently of [8], Trifonov [40] gave a

Õ(log n)-space algorithm for UNDIRECTED S-T CONNEC-

TIVITY by importing techniques from parallel algorithms,

like we do.) It implicitly1 computes an approximate pseu-
doinverse L+ of a graph Laplacian (formally defined in

Section II-B), which is equivalent to approximately solving

Laplacian systems. Here we will sketch their algorithm and

how we obtain a space-efficient analogue of it.

By using the deterministic logspace algorithm for UNDI-

RECTED S-T CONNECTIVITY [8], we may assume without

loss of generality that our input graph G is connected

(else we find the connected components and work on each

separately). By adding self-loops (which does not change

the Laplacian), we may also assume that G is regular and

nonbipartite. For notational convenience, here and through

most of the paper we will work with the normalized
Laplacian, which in the case that G is regular,2 equals

L = L(G) = I − M , where M = M(G) is the n × n
transition matrix for the random walk on G and now we are

using n for the number of vertices in G. Since the uniform

distribution is stationary for the random walk on a regular

graph, the all-ones vector �1 is in the kernel of L. Because G
is connected, there is no other stationary distribution and L
is of rank n− 1. Thus computing L+ amounts to inverting

L on the space orthogonal to �1.

The Peng–Spielman algorithm is based on the following

identity:

(I −M)+ =
1

2
· (I − J + (I +M)(I −M2)+(I +M)

)
,

where J is the matrix with all entries 1/n. That is,

L(G)+ =
1

2
· (I − J + (I +M(G))L(G2)+(I +M(G))

)
,

(1)

1Nearly linear-time algorithms for Laplacian system solvers do not
have enough time to write done a full approximate pseudoinverse, which
may be dense; instead they compute the result of applying the approximate
matrix to a given vector.

2In an irregular graph, the normalized Laplacian is defined to be I −
D−1/2AD−1/2, where D is the diagonal matrix of vertex degrees. When
G is d-regular, we have D = dI , so D−1/2AD−1/2 = A/d = M .
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where G2 is the multigraph whose edges correspond to

walks of length 2 in G.
This gives rise to a natural algorithm for computing

L(G)+, by recursively computing L(G2)+ and applying

Equation (1). After squaring the graph k = O(log n)
times, we are considering all walks of length 2k, which is

beyond the O(n2) mixing time of regular graphs, and hence

M(G2k) is approximately J , and we can easily approximate

the pseudoinverse as L(G2k)+ ≈ (I − J)+ = I − J .
However, each time we square the graph, the degree

also squares, which is too costly in terms of computa-

tional complexity. Thus, to obtain nearly linear time, Peng

and Spielman [23] sparsify G2 at each step of recursion.

Specifically, they carefully combine elements of random-

ized sparsification procedures from [41], [42], [43] that

retains Õ(n)/ε2 edges from G2 and provides a spectral

ε-approximation G′ to G2 in the sense that for every

vector v, we have vTL(G′)v = (1 ± ε)vTL(G2)v. The

recursion of Equation (1) behaves nicely with respect to

spectral approximation, so that if we replace G2 with such

an ε-approximation G′ at each step, we obtain a O(kε)-
approximation over the k = O(log n) levels of recursion

provided ε ≤ 1/O(k). Thus, we can take ε = 1/O(log n)
and obtain a good spectral approximation overall, using

graphs with Õ(n) edges throughout and thereby maintaining

a nearly linear amount of work.
There are two issues with trying to obtain a determin-

istic Õ(log n)-space algorithm from this approach. First,

we cannot perform random sampling to sparsify. Second,

even if we derandomize the sampling step in deterministic

logarithmic space, a direct recursive implementation would

cost O(log n) space for each of the k = O(log n) levels of

recursion, for a space bound of O(log2 n).
For the first issue, we show that the sparsification can

be done deterministically using the derandomized square of

Rozenman and Vadhan [24], which was developed in order

to give a simpler proof that UNDIRECTED S-T CONNECTIV-

ITY is in L. If G is a d-regular graph, a derandomized square

of G is obtained by using an expander H on d vertices to

select a subset of the walks of length 2 in G. If H has

degree c� d, then the corresponding derandomized square

of G will have degree d · c� d2. In [24], it was shown that

the derandomized square improves expansion (as measured

by spectral gap) nearly as well actual squaring, to within

a factor of 1 − ε, where ε is the second largest eigenvalue

of H in absolute value. Here we show that derandomized

squaring actually provides a spectral O(ε)-approximation

to G2. Consequently, we can use derandomized squaring

with expanders of second eigenvalue 1/O(log n) and hence

degree c = polylog(n) in the Peng–Spielman algorithm.
Now, to obtain a space-efficient implementation, we con-

sider what happens when we repeatedly apply Equation (1),

but with true squaring replaced by derandomized squaring.

We obtain a sequence of graphs G0, G1, . . . , Gk, where

G0 = G and Gi is the derandomized square of Gi−1,

a graph of degree d · ci. We recursively compute spectral

approximations of the pseudoinverses L(Gi)
+ as follows:

˜L(Gi−1)+ =

1

2
·
(
I − J + (I +M(Gi−1))L̃(Gi)+(I +M(Gi−1))

)
.

(2)

Opening up all k = O(log n) levels of this recursion, there

is an explicit quadratic matrix polynomial p where each of

the (noncommuting) variables appears at most twice in each

term, such that

L̃(G0) = p(I +M(G0), I +M(G1), . . . , I +M(Gk)).

Our task is to evaluate this polynomial in space Õ(log n).
First, we use the fact, following [8], [24], that a care-

ful implementation of k-fold derandomized squaring using

explicit expanders of degree c can be evaluated in space

O(log n+ k · log c) = Õ(log n). (A naive evaluation would

take space O(k · log n) = O(log2 n).) This means that we

can construct each of the matrices I + M(Gi) in space

Õ(log n).3 Next, we observe that each term in the multilinear

polynomial multiplies at most 2k + 1 of these matrices

together, and hence can be computed recursively in space

O(log k) · O(log n) = Õ(log n). Since iterated addition is

also in logspace, we can then sum to evaluate the entire

matrix polynomial in space Õ(log n).
To obtain an arbitrarily good final approximation error ε >

0, we could use expanders of degree c = poly((log n)/ε)
for our derandomized squaring, but this would yield a space

complexity of at least k · log n ≥ log(1/ε) · log n. To

obtain the doubly-logarithmic dependence on 1/ε claimed

in Theorem I.1, we follow the same approach as [23],

computing a constant factor spectral approximation as above,

and then using “Richardson iterations” at the end to im-

prove the approximation factor. Interestingly, this doubly-

logarithmic dependence on ε is even better than what is

achieved by the randomized algorithm of [39], which uses

space O(log(n/ε)).

II. PRELIMINARIES

A. Graph Laplacians

Let G = (V,E) be an undirected multigraph on n
vertices. The adjacency matrix A is the n × n matrix such

that entry Aij contains the number of edges from vertex j
to vertex i in G. The degree matrix D is the diagonal n×n
matrix such that Dii is the degree of vertex i in G. The

Laplacian of G is defined to be

L = D −A.

3We follow the usual model of space-bounded computation, where
algorithms can have output (to write-only memory) that is larger than
their space bound. We review the standard composition lemma for such
algorithms in Section VI-A.
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L is a symmetric, positive semidefinite matrix with non-

positive off-diagonal entries and diagonal entries Lii =∑
j �=i |Lij | equaling the sum of the absolute values of the

off-diagonal entries in that row. Each row of a Laplacian

sums to 0 so the all-ones vector is in the kernel of every

Laplacian.

We will also work with the normalized Laplacian

LD−1 = I −M where M = AD−1 is the transition matrix

of the random walk on the graph G.

Definition II.1. Let G be a regular undirected graph with

transition matrix M . Then we define

λ(G) = max
v⊥�1
v �=0

‖Mv‖
‖v‖

= 2nd largest eigenvalue of M in absolute value.

The spectral gap of G is γ(G) = 1− λ(G)

The spectral gap of a multigraph is a good measure of

its expansion properties. It is shown in [24] that if G is a

d-regular multigraph on n vertices with a self loop on every

vertex then λ(G) ≤ 1− 1/2d2n2.

Throughout the paper we let J denote the n × n matrix

with 1/n in every entry. So I−J is the normalized Laplacian

of the complete graph with a self loop on every vertex. We

use �1 to denote the all ones vector.

B. Moore-Penrose pseudoinverse

Since a normalized Laplacian L = I−M is not invertible,

we will consider the Moore-Penrose pseudoinverse of L.

Definition II.2. Let L be a real-valued matrix. The Moore-
Penrose pseudoinverse L+ of L is the unique matrix satis-

fying the following:

1) LL+L = L
2) L+LL+ = L+

3) L+L = (L+L)ᵀ

4) LL+ = (LL+)ᵀ.

Fact II.3. For a real-valued matrix L, L+ has the following
properties:

1) ker(L+) = ker(Lᵀ)
2) im(L+) = im(Lᵀ)
3) If c is a nonzero scalar then (cL)+ = c−1L+

4) L+ is real-valued
5) If L is symmetric with eigenvalues λ1, . . . , λn, then

L+ has the same eigenvectors as L and eigenvalues
λ+
1 , . . . , λ

+
n where

λ+
i =

⎧⎨
⎩

1

λi
if λi 	= 0

0 if λi = 0.

Next we show that solving a linear system in L can be

reduced to computing the pseudoinverse of L and applying

it to a vector.

Proposition II.4. If Lx = b has a solution, then the vector
L+b is a solution.

Proof: Let x∗ be a solution. Multiplying both sides of

the equation Lx∗ = b by LL+ gives

LL+Lx∗ = LL+b

=⇒ Lx∗ = LL+b

=⇒ b = LL+b

The final equality shows that L+b is a solution to the system.

C. Spectral approximation

We want to approximate a solution to Lx = b. Our

algorithm works by computing an approximation L̃+ to the

matrix L+ and then outputting L̃+b as an approximate solu-

tion to Lx = b. We use the notion of spectral approximation

of matrices first introduced in [41].

Definition II.5. Let X,Y be symmetric n×n real matrices.

We say that X ≈ε Y if

e−ε ·X � Y � eε ·X
where for any two matrices A,B we write A � B if B−A
is positive semidefinite.

Below are some additional useful facts about spectral

approximation that we use throughout the paper.

Proposition II.6 ([23]). If X,Y,W,Z are positive semidef-
inite n× n matrices then

1) If X ≈ε Y then Y ≈ε X
2) If X ≈ε Y and c ≥ 0 then cX ≈ε cY
3) If X ≈ε Y then X +W ≈ε Y +W
4) If X ≈ε Y and W ≈ε Z then X +W ≈ε Y + Z
5) If X ≈ε1 Y and Y ≈ε2 Z then X ≈ε1+ε2 Z
6) If X ≈ε Y and M is any matrix then MᵀXM ≈ε

MᵀYM
7) If X ≈ε Y and X and Y have the same kernel, then

X+ ≈ε Y
+

8) If X ≈ε Y then I⊗X ≈ε I⊗Y where I is the identity
matrix (of any dimension) and ⊗ denotes the tensor
product.

The proof of Proposition II.6 can be found in the full

version of this paper.

III. MAIN THEOREM AND APPROACH

Our Laplacian solver works by approximating L+. The

main technical result is:

Theorem III.1. Given an undirected, connected multigraph
G with Laplacian L = D−A and ε > 0, there is a determin-
istic algorithm that computes L̃+ such that L̃+ ≈ε L

+ that
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uses space O(log n · log log(n/ε)) where n is the bitlength
of the input.

Approximating solutions to Laplacian systems follows as

a corollary and is discussed in Section VIII. To prove Theo-

rem III.1 we first reduce the problem to the task of approx-

imating the pseudoinverse of the normalized Laplacian of a

regular, aperiodic, multigraph with degree a power of 2. Let

L = D−A be the Laplacian of an undirected multigraph G.

We can make G f -regular with f a power of 2 and aperiodic

by adding an appropriate number of self loops to every

vertex. Let E be the diagonal matrix of self loops added to

each vertex in G. Then L = D+E−A−E is the Laplacian

of the regular, aperiodic multigraph (self loops do not change

the unnormalized Laplacian) and L(D + E)−1 = L/f is

the normalized Laplacian. Recalling that (L/f)+ = f · L+

completes the reduction.
Our algorithm for computing the pseudoinverse of the

normalized Laplacian of a regular, aperiodic multigraph is

based on the Laplacian solver of Peng and Spielman [23].

It works by using the following identity:

Proposition III.2. If L = I−M is the normalized Laplacian
of an undirected, connected, regular, aperiodic, multigraph
G on n vertices then

L+ =
1

2

(
I − J + (I +M)(I −M2)+(I +M)

)
This identity is adapted from the one used in [23]. A

proof of its correctness can be found in the full version of

this paper.
Recall that squaring the transition matrix M of a regular

multigraph G yields the transition matrix of G2, which is

defined to be the graph on the same vertex set as G whose

edges correspond to walks of length 2 in G. So the identity

from Proposition III.2 reduces the problem of computing

the pseudoinverse of the normalized Laplacian of G to

computing the pseudoinverse of the normalized Laplacian

of G2 (plus some additional matrix products). Recursively

applying the identity k times results in a matrix polynomial

involving the term (I −M2k)+. Since G is connected and

aperiodic, as k grows, the term (I − M2k)+ approaches

(I−J)+ = I−J . Undirected multigraphs have polynomial

mixing time, so setting k to O(log n) and then replacing

(I−M2k+1

)+ in the final term of the expansion with (I−J)
should give a good approximation to L+ without explicitly

computing any pseudoinverses.
Using the identity directly to approximate L+ in Õ(log n)

space is infeasible because raising a matrix to the 2kth power

by repeated squaring takes space Θ(k · log n), which is

Θ(log2 n) for k = Θ(log n).
To save space we use the derandomized square introduced

in [24] in place of true matrix squaring. The derandomized

square improves the connectivity of a graph almost as much

as true squaring does, but it does not square the degree and

thereby avoids the space blow-up when iterated.

IV. APPROXIMATION OF THE PSEUDOINVERSE

In this section we show how to approximate the pseu-

doinverse of a Laplacian using a method from Peng and

Spielman [23]. The Peng Spielman solver was originally

written to approximately solve symmetric diagonally dom-

inant systems, which in turn can be used to approximate

solutions to Laplacian systems. We adapt their algorithm to

compute the pseudoinverse of a graph Laplacian directly.

The approximation proceeds in two steps. The first achieves

a constant spectral approximation to the pseudoinverse of

a Laplacian matrix. Then the constant approximation is

boosted to an ε approximation through rounds of Richardson

iteration.

Theorem IV.1 (Adapted from [23]). Let ε0, . . . , εk ≥ 0 and
ε =

∑k
0 εi. Let M0, . . . ,Mk be symmetric matrices such that

Li = I −Mi are positive semidefinite for all i ∈ {0, . . . , k}
and Li ≈εi−1 I−M2

i−1 for all 1 ≤ i ≤ k and Lk ≈εk I−J .
Then

L+
0 ≈ε

1

2
(I − J) +

(
k−1∑
i=0

1

2i+2
Wi

)
+

1

2k+1
Wk

where for all i ∈ [k]

Wi = (I+M0) · . . . ·(I+Mi)(I−J)(I+Mi) · . . . ·(I+M0)

The proof of this theorem is adapted from [23] and can

be found in the full version of this paper.

Our algorithm works by using Theorem IV.1 to compute

a constant approximation to L+ and then boosting the

approximation to an arbitrary ε-approximation. Our main

tool for this is the following lemma which shows how an ap-

proximate pseudoinverse can be improved to a high quality

approximate pseudoinverse. This is essentially a symmetric

version of a well known technique in linear system solving

known as preconditioned Richardson iteration. It is a slight

modification of Lemma 31 from [44].

Lemma IV.2. Let L̃+ ≈α L+ for α < 1/2. Then

Lk = e−α ·
k∑

i=0

L · (I − e−α · L̃+ · L)i

is a matrix satisfying Lk ≈O((2α)k) L
+

The proof of Lemma IV.2 can be found in the full version

of this paper.

V. DERANDOMIZED SQUARING

To approximate the pseudoinverse of a graph Laplacian

we will use Theorem IV.1 to get a constant approximation

and then use Lemma IV.2 to boost the approximation. In

order to achieve a space efficient and deterministic imple-

mentation of Theorem IV.1, we will replace every instance of

matrix squaring with the derandomized square of Rozenman
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and Vadhan [24]. Before defining the derandomized square

we define two-way labelings and rotation maps.

Definition V.1. [45] A two-way labeling of a d-regular

undirected multigraph G is a labeling of the edges in G
such that

1) Every edge (u, v) has two labels in [d], one as an edge

incident to u and one as an edge incident to v.

2) For every vertex v the labels of the edges incident to

v are distinct.

In [24], two-way labelings are referred to as undirected
two-way labelings. In a two-way labeling, each vertex has

its own labeling from 1 to d for the d edges incident to

it. Since every edge is incident to two vertices, each edge

receives two labels, which may or may not be the same. It is

convenient to specify a multigraph with a two-way labeling

by a rotation map:

Definition V.2. [45] Let G be a d-regular multigraph on

n vertices with a two-way labeling. The rotation map
RotG : [n] × [d] → [n] × [d] is defined as follows:

RotG(v, i) = (w, j) if the ith edge incident to vertex v leads

to vertex w and this edge is the jth edge incident to w.

Note that RotG is its own inverse, and that any function

Rot : [n] × [d] → [n] × [d] that is its own inverse defines a

d-regular multigraph on n vertices with a two-way labeling.

Recall that the edges in G2 correspond to all of the walks

of length 2 in G. This is equivalent to placing a d-clique

with self loops on every vertex on the neighbor set of every

vertex in G. The derandomized square picks out a subset of

the walks of length 2 by placing a small degree expander

on the neighbor set of every vertex rather than a clique.

Definition V.3 ([24]). Let G be a d-regular multigraph on

n vertices with a two-way labeling, let H be a c-regular

multigraph on d vertices with a two-way labeling. The

derandomized square G s©H is a (d · c)-regular graph on

n vertices with rotation map RotG s©H defined as follows:

For v0 ∈ [n], i0 ∈ [d], and j0 ∈ [c], we compute

RotG s©H(v0, (i0, j0)) as

1) Let (v1, i1) =RotG(v0, i0)
2) Let (i2, j1) =RotH(i1, j0)
3) Let (v2, i3) =RotG(v1, i2)
4) Output (v2, (i3, j1))

It can be verified that RotG s©H is its own inverse and

hence this indeed defines a (d · c)-regular multigraph on n
vertices. The main idea behind the derandomized square is

that it improves the connectivity of the graph (as measured

by the second eigenvalue) without squaring the degree.

Theorem V.4 ([24]). Let G be a d-regular undirected
multigraph with a two-way labeling and λ(G) = λ and H be
a c-regular graph with a two-way labeling and λ(H) = μ.

Then G s©H is a d · c-regular undirected multigraph and

λ(G s©H) ≤ 1− (1− λ2) · (1− μ) ≤ λ2 + μ

The output of the derandomized square is an undirected

multigraph with a two-way labeling. So the operation can

be repeated on the output. In our algorithm for computing

an approximate pseudoinverse, we use the Peng Spielman

identity but replace every instance of a squared transition

matrix with the derandomized square. To prove that this

approach indeed yields an approximation to the pseudoin-

verse, we want to apply Theorem IV.1. For this we need to

prove two properties of the derandomized square: that the

derandomized square is a good spectral approximation of

the true square and that iterating the derandomized square

yields an approximation of the complete graph. The latter

property follows from the corollary and lemma below.

Corollary V.5. Let G0 be a d-regular undirected multigraph
on n vertices with a two-way labeling and λ(G0) = λ
and H1, . . . , Hk be c-regular graphs with two-way labelings
where Hi has d·ci−1 vertices and λ(Hi) ≤ μ. For all i ∈ [k]
let Gi = Gi−1 s©Hi. If μ ≤ 1/100 and k = �6 log d2n2�
then λ(Gk) ≤ 1/3.

Proof: Let μ ≤ 1/100 and for all i ∈ [k], let γi =
1− λ(Gi). If γi−1 < 2/3 then

γi ≥ (1− λ(Gi−1)
2) · (1− μ)

= (2γi−1 − γ2
i−1) · (1− μ)

≥ 99

100
· 4
3
γi−1

≥ 5

4
γi−1

It follows that until γi is driven above 2/3 we have γk ≥
(5/4)k · γ0. Since γ0 ≥ 1/2d2n2, setting k = �6 log d2n2�
will result in λ(Gk) ≤ 1/3.

Lemma V.6. If L = I −M is the normalized Laplacian
of a d-regular, undirected, 1/2-lazy, multigraph G, and ε =
ln(1/(1− λ)) then L ≈ε I − J if and only if λ(G) ≤ λ.

A proof of Lemma V.6 can be found in the full version

of this paper.

We prove in Theorem V.7 that if H is an expander

then the derandomized square of a multigraph G with H
is a good spectral approximation to G2 and thus can be

used for the approximation in Theorem IV.1. The idea is

that the square of a graph can be interpreted as putting

d-clique K on the neighbors of each vertex v in G, and

the derandomized square can be interpreted as putting a

copy of H on each vertex. By Lemma V.6, L(H) spectrally

approximates L(K), and we can use this to show that the

Laplacian of L(G s©H) spectrally approximates L(G2).

Theorem V.7. Let G be a d-regular, undirected, aperiodic
multigraph on n vertices and H be a regular multigraph on
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d vertices with λ(H) ≤ α. Then

L(G2) ≈ε L(G s©H)

for ε = ln(1/(1− α)).

Proof: Following the proof from [24] that the de-

randomized square improves connectivity, we can write

the transition matrix for the random walk on G s©H as

M = PÃB̃ÃQ, where each matrix corresponds to a step

in the definition of the derandomized square:

• Q is an n · d × n matrix that maps any n-vector

v to v ⊗ ud (where ud denotes the d-coordinate

uniform distribution). This corresponds to “lifting” a

probability distribution over [n] to one over [n] × [d]
where the mass on each coordinate is divided uni-

formly over d coordinates in the distribution over

[n] × [d]. That is Q(u,i),v = 1/d if u = v
and 0 otherwise where the rows of Q are ordered

(1, 1), (1, 2), . . . , (1, d), (2, 1), . . . , (2, d), . . . (n, d).
• Ã is the n · d×n · d permutation matrix corresponding

to the rotation map for G. That is A(u,i),(v,j) = 1 if

RotG(u, i) = (v, j) and 0 otherwise.

• B̃ is In⊗B, where In is the n×n identity matrix and

B is the transition matrix for H .

• P is the n×n ·d matrix that maps any (n ·d)-vector to

an n-vector by summing all the entries corresponding

to the same vertex in G. This corresponds to projecting

distributions on [n] × [d] back down to a distribution

over [n]. That is Pv,(u,i) = 1 if u = v and 0

otherwise where the columns of P are ordered

(1, 1), (1, 2), . . . , (1, d), (2, 1), . . . , (2, d), . . . (n, d).
Note that P = d ·Qᵀ.

Let c be the degree of H and let K be the complete graph

on d vertices with self loops on every vertex. Lemma V.6

says that LH ≈ε LK where LH = I −B and LK = I − J
are the normalized Laplacians of H and K, respectively. It

follows that In⊗LH = In·d−B̃ ε-approximates In⊗LK =
In·d − In ⊗ J by Proposition II.6 Part 8. In ⊗ LH is the

Laplacian for n disjoint copies of H and In ⊗ LK is the

Laplacian for n disjoint copies of K. Applying the matrices

PÃ and ÃQ on the left and right place these copies on the

neighborhoods of each vertex of G.

Note that Ã is symmetric because RotG is an involution.

In other words, for all u, v ∈ [n] and a, b ∈ [d], RotG(u, a) =
(v, b) =⇒ RotG(v, b) = (u, a). This also implies that

Ã2 = In·d. Also note that PQ = In and QP = In·d ⊗ J .

Applying these observations along with Proposition II.6 part

6 we get

In −M = PÃIn·dÃQ− PÃB̃ÃQ

= PÃ(In ⊗ LH)ÃQ

= d ·QᵀÃᵀ(In ⊗ LH)ÃQ

≈ε d ·QᵀÃᵀ(In ⊗ LK)ÃQ

= PÃ(In ⊗ LK)ÃQ

= In − PÃ(In ⊗ J)ÃQ

= In − PÃQPÃQ

= L(G2)

where the final line follows from observing that PÃQ
equals the transition matrix of G. Thus the above shows

that L(G2) ≈ε L(G s©H) as desired.

Note that if we want to compute a constant spectral

approximation to L+ then we need each εi = 1/O(log n)
so that the sum of k = O(log n) of them is a constant.

This implies that we need α = 1/O(log n) in Theorem

V.7 which requires expanders of polylogarithmic degree.

This will affect the space complexity of the algorithm as

discussed in the next section.

VI. SPACE COMPLEXITY

In this section we argue that given a Laplacian L,

our algorithm produces an ε-approximation to L+ using

O (log n · log log(n/ε)) space. First we prove that when L is

the normalized Laplacian of a regular graph, we can produce

a constant-approximation to L+ using O (log n · log log n)
space and then boost the approximation quality to arbitrary

ε accuracy using an additional O(log n · log log(1/ε)) space

thereby proving Theorem III.1.

A. Model of space bounded computation

We use a standard model of space bounded computation

described here. The machine has a read-only input tape,

a constant number of read/write work tapes, and a write-

only output tape. We say the machine runs in space s if

throughout the computation, it only uses s tape cells on the

work tapes. The machine may write outputs to the output

tape that are larger than s (in fact as large as 2O(s)) but

the output tape is write-only. For the randomized analogue,

we imagine the machine endowed with a coin-flipping box.

At any point in the computation the machine may ask for a

random bit but in order to remember any bit it receives, the

bit must be recorded on a work tape.

We use the following proposition about the composition

of space-bounded algorithms.

Proposition VI.1. Let f1 and f2 be functions that can be
computed in space s1(n), s2(n) ≥ log n, respectively, and
f2 has output of length �1(n) on inputs of size n. Then f2◦f1
can be computed in space

O(s2(�1(n)) + s1(n)).
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B. Constant approximation of the pseudoinverse

In this section we show how to compute a constant

approximation of the pseudoinverse of the normalized Lapla-

cian of a regular multigraph in space O(log n · log log n)
where n is the bitlength of the input.

Proposition VI.2. There is an algorithm that given an undi-
rected, aperiodic, d-regular multigraph G with normalized
Laplacian L, and d a power of 2, computes a matrix L̃+

such that L̃+ ≈α L+ using space O (log n · log log n) where
α < 1/2 and n is the bitlength of the input.

To prove Proposition VI.2, we first prove a few lemmas.

We will use the fact that large derandomized powers can

be computed in small space, which we prove following [8],

[24], [46]. First we note that neighbors in the sequence of

expanders we use for the iterated derandomized square can

be explicitly computed space-efficiently.

Lemma VI.3. For every t ∈ N and μ > 0, there is a graph
Ht,μ with a two-way labeling such that:

• H has 2t vertices and is c-regular for c being a power
of 2 bounded by poly(t, 1/μ).

• λ(H) ≤ μ
• RotH can be evaluated in linear space in its input

length, i.e. space O(t+ log c).

Proof sketch.: The expanders can be obtained by letting

Ht,λ be the Cayley graph on vertex set Ft
2 with neighbors

specified by a λ-biased multiset S ⊆ Ft
2 [47], [48], taking

RotH(v, i) = (v + si, i), where si is the ith element of S.

Now we argue that high derandomized powers can be

computed space-efficiently.

Lemma VI.4. Let G0 be a d-regular, undirected multigraph
on n vertices with a two-way labeling and H1, . . . , Hk be
c-regular undirected graphs with two-way labelings where
for each i ∈ [k], Hi has d · ci−1 vertices. For each i ∈ [k]
let

Gi = Gi−1 s©Hi.

Then given v0 ∈ [n], i0 ∈ [d · ci−1], j0 ∈ [c],
RotGi(v, (i0, j0)) can be computed in space O(log(n · d) +
k · log c) with oracle queries to RotH1 , . . . ,RotHk

.

Proof: When c is subpolynomial we are reasoning about

sublogarithmic space complexity, which can depend on the

model. We will use a model where the read-only input

tape contains the initial input graph G0, the first read-write

work tape contains the input triple (v0, (i0, j0)), where v0
is a vertex of Gi, i0 ∈ [d · ci−1] is an edge label in Gi,

and j0 ∈ [c] is an edge label in Hi, and the other work

tapes are blank. When the computation ceases, we want

(v2, (i3, j1)) = RotGi(v0, (i0, j0)) on the first work tape

and the other work tapes to be blank.

Let Space(Gi) be the amount of space required to com-

pute the rotation map of graph Gi. We will show that for

all i ∈ [k], Space(Gi) = Space(Gi−1)+O(log c). Note that

Space(G0) = O(log(nd)).

Fix i ∈ [k]. We begin with v0 ∈ [n], i0 ∈ [d · ci−1] and

j0 ∈ [c] on the first work tape and we want to compute

RotGi
(v0, (i0, j0)). We recursively compute RotGi−1

(v0, i0)
so that the work tape now contains (v1, i1, j0). Then

we compute RotHi(i1, j0) so that the tape now contains

(v1, i2, j1). Finally, we compute RotGi−1(v1, i2) so that the

tape now contains (v2, i3, j1).

This requires 2 evaluations of the rotation map of Gi−1

and one evaluation of the rotation map of Hi. Note that we

can reuse the same space for each of these evaluations be-

cause they happen in succession. The space needed on top of

Space(Gi−1) is the space to store edge label j0, which uses

O(log c) space. So Space(Gi) = Space(Gi−1) + O(log c).
Since i can be as large as k and Space(G0) = O(log(n ·d))
we get that for all i ∈ [k], Space(Gi) = O(log n·d+k·log c).

Corollary VI.5. Let M0, . . . ,Mk be the transition matrices
of G0, . . . , Gk as defined in Lemma VI.4. For all � ∈ [k],
given coordinates i, j ∈ [n], entry i, j of M� can be
computed in space O(log n · d+ k · log c).

Proof: Lemma VI.4 shows that we can compute neigh-

bors in the graph G� in space O(log n · d+ k · log c). Given

coordinates i, j the algorithm initiates a tally t at 0 and

computes RotG�
(i, q) for each q from 1 to d · c�−1, the

degree of G�. If the vertex outputted by RotG�
is j, then

t is incremented by 1. After the loop finishes, t contains

the number of edges from i to j and the algorithm outputs

t/d · c�−1, which is entry i, j of M�. This used space

O(log n · d + k · log c) to compute the rotation map of G�

plus space O(log(d · c�−1)) to store q and t. So the total

space usage is O(log n · d+ k · log c) +O(log(d · c�−1)) =
O(log n · d+ k · log c).

It follows from Corollary VI.5 that when k = O(log n)
for all i ∈ [k] entries in I +Mi can be computed in space

O(log n · log c). When we apply it, we will use expanders

(from Lemma VI.3) of degree c = O(polylog(n)), so our

algorithm computes entries of I + Mi in space O(log n ·
log log n).

Now we prove that we can multiply matrices in small

space.

Lemma VI.6. Given matrices M (1), . . . ,M (k) and indices
i, j (M (1) · M (2) · . . . · M (k))ij can be computed using
O(log n · log k) space where n is the dimension of the input
matrices.

Proof: First we show how to multiply two n×n matri-

ces in O(log n) space. Given as input matrices M (1),M (2)
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and indices i, j we wish to compute

(M (1) ·M (2))ij =

n∑
�=1

M
(1)
i� M

(2)
�j

We use the fact that n n-bit numbers can be multiplied and

added in O(log n) space (in fact in TC0 [49], [50]). So for

a counter � from 1 to n, the algorithm multiplies Mi� ·M�j

and adds the result. The counter can be stored with log n
bits and the arithmetic can be carried out in logspace.

To multiply k matrices we recursively split the product

into two blocks and multiply each block separately. The

depth of the recursion is log k and each level requires

O(log n) space for a total of O(log n · log k) space.

Now we can prove Proposition VI.2.

Proof of Proposition VI.2: Let M0 be the transition ma-

trix of G0 = G such that L = I−M0. Clearly a two-way la-

beling of G can be computed in O(log n) space by just fixing

a canonical way for each vertex to label its incident edges.

Set k = �6 log d2n2� and μ = 1/30k. Let c = polylog(n)
be a power of 2 and let ti = log d · ci−1 for all i ∈ [k].
Note that each ti is an integer because d and c are powers

of 2. Let H1, . . . , Hk be ci-regular graphs on 2ti = d · ci−1

vertices, respectively and λ(Hi) ≤ μ as given by Lemma

VI.3. So for all i ∈ [k], ci = poly(ti, 1/μ) = polylog(n).
Without loss of generality, we can take c = polylog(n) ≥ ci
for all i ∈ [k] and make each expander c-regular by adding

self loops.

For all i ∈ [k] let Gi = Gi−1 s©Hi and let Mi be the

transition matrix of Gi. By Theorem V.7 we have I−Mi ≈ε

I − M2
i−1 for all i ∈ [k] where ε = ln(1/(1 − μ)). By

Corollary V.5 λ(Gk) ≤ 1/3 and so by Lemma V.6 we have

I −Mk ≈ln(3/2) I − J .

From Theorem IV.1, we get that

L+ ≈δ
1

2
(I − J) +

(
k−1∑
i=0

1

2i+2
Wi

)
+

1

2k+1
Wk (3)

where for all i ∈ [k]

Wi = (I+M0) · . . . ·(I+Mi)(I−J)(I+Mi) · . . . ·(I+M0)

for δ = k · ln(1/(1 − μ)) + ln(3/2) < .5 (using the fact

that e−2μ ≤ 1− μ). So we need to compute approximation

3 above in O(log n · log log n) space. There are k + 2 =
O(log n) terms in the sum. Aside from the first term (which

is easy to compute) and adjusting the coefficient on the last

term, the ith term in the expansion looks like

1

2i+2
(I +M0) . . . · (I +Mi)(I −J)(I +Mi) · . . . · (I +M0)

which is the product of at most O(log n) matrices. Corollary

VI.5 says that for all i ∈ [k] we can compute the entries of

Mi in space O(log n · d + k log c) = O(log n · log log n).
Lemma VI.6 says that we can compute the product of

O(log n) matrices in O(log n · log log n) space. By the

composition of space bounded algorithms, each term in the

sum can be computed in space O(log n·log log n)+O(log n·
log log n) = O(log n·log log n). Then since iterated addition

can be carried out in O(log n) space [49], [50], the terms of

the sum can be added using an additional O(log n) space.

Again by the composition of space bounded algorithms, the

total space usage is O(log n · log log n) for computing a

constant approximation to L+.

C. A more precise pseudoinverse

Now that we have computed a constant approximation to

L+, we show how to improve the quality of our approxima-

tion through iterative methods.

Proposition VI.7. Let L be the normalized Laplacian of
an undirected, regular, aperiodic, multigraph. There is an
algorithm such that for every constant α < 1/2, given L̃1

such that L̃1 ≈α L+, computes L̃2 such that L̃2 ≈ε L+

using space O(log n · log log n+ log n · log log(1/ε)) where
n is the length of the input.

Proof: By Lemma IV.2, given L̃1 ≈α L, we can boost

the approximation from α to ε by setting k = O(log(1/ε))
and computing

L̃2 = e−α ·
k∑

i=0

L · (I − e−αL̃1 · L)i

By Proposition VI.2, entries in L̃1 can be computed in space

O(log n · log log n) and hence entries in I− e−α · L̃1 ·L can

be computed in space O(log n · log log n) because matrix

addition and multiplication can be done in O(log n) space.

Viewing (I−e−α ·L̃1 ·L) as a single matrix, each term in the

sum above is the product of at most i+1 matrices. Lemma

VI.6 tells us that we can compute such a product in space

O(log n · log i). Since i can be as large as k = O(log 1/ε),
this gives space O(log n · log log(1/ε)) for computing each

term. Then since iterated addition can be computed in

logarithmic space [49], [50], the k + 1 terms in the sum

can be added using an additional O(logN) space where N
is the bit length of the computed terms. By composition

of space bounded algorithms, computing L̃2 uses a total of

O(log n · log log n+ log n · log log(1/ε)) space.

VII. PROOF OF MAIN RESULT

Now we are ready to prove our main technical result,

Theorem III.1. Theorem I.1 follows as a corollary and is

discussed in Section VIII.

Proof of Theorem III.1: Let L = D − A be the input

Laplacian of the graph G. Let Δ be the maximum vertex

degree in G. We construct a graph G′ as follows: at every

vertex v, we add 2�log 2Δ� − d(v) self loops where d(v)
denotes the degree of v. Note that 2�log 2Δ� − d(v) ≥ Δ
so this ensures G′ is aperiodic and 2�log 2Δ�-regular. Let E
be the diagonal matrix of self loops added in this stage.
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Then the degree matrix of G′ is D + E = 2�log 2Δ� · I and

the adjacency matrix of G′ is A+ E. So the unnormalized

Laplacian of G′ is D + E − A − E = D − A, which is

the same as the unnormalized Laplacian of G. Let L′ =
(D −A)(D +E)−1 = I −M be the normalized Laplacian

of G′ where M is the transition matrix of G′.
By Proposition VI.2, we can compute a matrix L̃1 such

that L̃1 ≈α L′+ for α < 1/2 in space O(log n · log log n).
Then we can compute L̃2 ≈ε L′+ by applying Proposi-

tion VI.7 using an additional O(log n · log log n + log n ·
log log(1/ε)) space. By composition of space bounded algo-

rithms this yields a O(log n·log logn+log n·log log(1/ε)) =
O(log n · log log(n/ε)) space algorithm for computing an

ε-approximation to L′+. Recalling that L′ = L/2�log 2Δ�

implies that L̃2/2
�log 2Δ� ≈ε L

+ as desired.

VIII. COROLLARIES

In this section we prove some applications of Theorem

III.1.

Definition VIII.1. Let L be the normalized Laplacian of

an undirected multigraph and b ∈ im(L). Then x̃ is an ε-
approximate solution to the system Lx = b if there is an

actual solution x∗ such that

‖x∗ − x̃‖L ≤ ε‖x∗‖L
where for all v ∈ Rn, ‖v‖L ≡

√
vᵀLv.

Here we prove that our algorithm for computing an ε-
approximation to the pseudoinverse of a Laplacian can

be used to solve Laplacian systems (Theorem I.1). The

following lemma is useful for translating between the L-

norm and the �2 norm.

Lemma VIII.2. Let x ∈ Rn such that x ⊥ �1 and L be
the normalized Laplacian of an undirected multigraph with
smallest nonzero eigenvalue γ2 and largest eigenvalue γn.
Then

γ2‖x‖22 ≤ ‖x‖2L ≤ γn‖x‖22
Proof: By definition ‖x‖2L = xᵀLx and by the varia-

tional characterization of the eigenvalues it follows that

γ2 · ‖x‖22 = γ2 · xᵀx ≤ ‖x‖2L ≤ γn · xᵀx = γn · ‖x‖22

Since for undirected multigraphs with maximum degree d,

γ2 ≥ 1/2dn2 and γn ≤ 2d it follows from the above lemma

that for all x ⊥ �1, ‖x‖2 and ‖x‖L are within a multiplicative

factor of 2d · n of one another. We also use the following

fact.

Lemma VIII.3. If L̃+ ≈ε L+, ε ≤ ln(2) and b ∈ im(L)
then x̃ = L̃+b is a

√
2ε-approximate solution to Lx = b.

A proof of Lemma VIII.3 can be found in the full version

of this paper. Now using Theorem III.1 and the lemmas

above we can prove Theorem I.1.

Proof of Theorem I.1: Let L = D − A be the input

Laplacian of the graph G and let b ⊥ �1 be the given vector. If

G is disconnected then we can use Reingold’s algorithm to

find the connected components and work on each component

separately. So assume without loss of generality that G is

connected. We may also assume without loss of generality

that G is d-regular. Let ε′ = (ε/(4d2n2))2/2 where n is

the bit length of the input. Theorem III.1 says that we can

compute L̃+ ≈ε′ L+ in space O(log n · log log(n/ε′)) =
O(log n · log log(n/ε)).

By Lemma VIII.3, x = L̃+b is a
√
2ε′-approximate

solution to Lx = b. In other words, letting x∗ = L+b we

have

‖x− x∗‖L ≤
√
2ε′ · ‖x∗‖L

Translating to the �2 norm we get

1

2dn
·‖x−x∗‖2 ≤ ‖x−x∗‖L ≤

√
2ε′·‖x∗‖L ≤ 2dn

√
2ε′·‖x∗‖2

which implies

‖x− x∗‖2 ≤ (2dn)2
√
2ε′ · ‖x∗‖2 = ε · ‖x∗‖2

as desired.

Our algorithm also implies a Õ(log n) space algorithm

for computing many interesting quantities associated with

undirected graphs. Below we survey a few of these corol-

laries including hitting times, commute times, and escape

probabilities.

Definition VIII.4. In a multigraph G = (V,E) the hitting
time Huv from u to v ∈ V is the expected number of steps

a random walk starting at u will take before hitting v.

Definition VIII.5. In a multigraph G = (V,E) the commute
time Cuv = Huv + Hvu between vertices u, v ∈ V is the

expected number of steps a random walk starting at u will

take to reach v and then return to u.

Corollary VIII.6. Given an undirected multigraph G =
(V,E), vertices u, v ∈ V and ε > 0 there are determin-
istic O(log n · log log(n/ε)) space algorithms for computing
numbers H̃uv and C̃uv such that

|H̃uv −Huv| ≤ ε

and
|C̃uv − Cuv| ≤ ε

where n is the bitlength of the input.

Note that since the values we are approximating are at

least 1 (if not 0), Corollary VIII.6 also implies that we can

achieve relative ε error. Our algorithm can also be used to

compute escape probabilities.
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Definition VIII.7. In a graph G = (V,E), for two vertices

u and v, the escape probability pw(u, v) denotes the prob-

ability that a random walk starting at vertex w reaches u
before first reaching v.

Corollary VIII.8. Given an undirected multigraph G =
(V,E), vertices u, v ∈ V , and ε > 0, there is a deterministic
O(log n · log log(n/ε)) space algorithm for computing a
vector p̃ such that

‖p̃− p‖ ≤ ε

where p is the vector of escape probabilities pi(u, v) in G.

Proofs of Corollaries VIII.6 and VIII.8 can be found in

the full version of this paper.
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