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Abstract—Ramsey theory assures us that in any graph there
is a clique or independent set of a certain size, roughly
logarithmic in the graph size. But how difficult is it to find
the clique or independent set? If the graph is given explicitly,
then it is possible to do so while examining a linear number
of edges. If the graph is given by a black-box, where to figure
out whether a certain edge exists the box should be queried,
then a large number of queries must be issued. But what if
one is given a program or circuit for computing the existence
of an edge? This problem was raised by Buss and Goldberg
and Papadimitriou in the context of TFNP, search problems
with a guaranteed solution.

We examine the relationship between black-box complexity
and white-box complexity for search problems with guaranteed
solution such as the above Ramsey problem. We show that
under the assumption that collision resistant hash function exist
(which follows from the hardness of problems such as factoring,
discrete-log and learning with errors) the white-box Ramsey
problem is hard and this is true even if one is looking for
a much smaller clique or independent set than the theorem
guarantees.

In general, one cannot hope to translate all black-box
hardness for TFNP into white-box hardness: we show this by
adapting results concerning the random oracle methodology
and the impossibility of instantiating it.

Another model we consider is the succinct black-box, where
there is a known upper bound on the size of the black-box
(but no limit on the computation time). In this case we show
that for all TFNP problems there is an upper bound on the
number of queries proportional to the description size of the
box times the solution size. On the other hand, for promise
problems this is not the case.

Finally, we consider the complexity of graph property testing
in the white-box model. We show a property which is hard to
test even when one is given the program for computing the
graph. The hard property is whether the graph is a two-source
extractor.

Keywords-Search problems; the Ramsey problem; white-box
complexity; black-box complexity; collision-resistant hashing

I. INTRODUCTION

Consider a setting where one is given a large object

(e.g., a graph) and the goal is to find some local pattern
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(e.g., a certain subgraph) in the object or determine whether

it satisfies some property. We investigate the relationship

between the black-box setting, where access to the object is

via oracle queries, and the white-box setting, where access to

the object is given by a program or a circuit, in the context

of search problems in which a solution is guaranteed1 to

exist and in the context of property testing.

The Ramsey problem: The Ramsey number R(n) is

the minimal number such that any graph on R(n) vertices

contains a clique or independent set of size n. The Ramsey

theorem states that for any n, it holds that R(n) is finite

and moreover that R(n) ≤ 22n. This guarantee raises the

following question: Given a graph with 22n nodes, how
difficult is it to find n nodes that are either a clique or
an independent set?

The standard proof of Ramsey’s theorem is actually

constructive and yields an algorithm that finds the desired

clique or independent set, but explores a linear (in the graph

size) number of nodes and edges. Is it necessary to explore

a large portion of the graph? This of course depends on the

representation of the graph and the computational model.

In the black-box model, where the access to the graph is

merely by oracle queries, Impagliazzo and Naor [1] observed

that any randomized algorithm must make at least Ω(2n/2)
queries before finding the desired clique or independent set.

This was based on the fact that a random graph on 22n

vertices has no clique or independent set of size 4n with

high probability (see Section II-B).

In this work we are interested in the white-box model2,

where the above question is phrased as: Given a Boolean
circuit encoding the edges of a graph with 22n nodes, how
difficult is it to find n nodes that are either a clique or an
independent set? This question has been explicitly asked

by Buss [2] and Goldberg and Papadimitriou [3] in the

context of search problems in the complexity class TFNP.

The class TFNP, defined by Megiddo and Papadimitriou [4],

1We are not talking about promise problems, but rather when there is a
proof that the pattern exists.

2An example of a graph given as a white-box is the Hadamard graph,
where the two inputs are treated as vectors over GF[2] and there is an edge
if and only if the inner product between them is 1.
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is the class of all search problems for which a solution

is guaranteed to exist for every instance and verifying a

solution can be done efficiently. Thus, the problem where

the input is a graph defined by a circuit and the target is

to find a clique or an independent set (of appropriate sizes)

belongs to the class TFNP.

Our first result is an answer to this question. We show that

under the assumption that collision resistant hash functions3

exist, there exists an efficiently samplable distribution of

circuits (circuits on 4n inputs representing graphs on 22n

vertices), for which finding a clique or independent set

of size n is impossible for any polynomial-time (in n)

algorithm.

We also prove a white-box lower bound of a similar

flavor for a related problem known as the colorful Ram-

sey problem. While a graph can be viewed as the edges

colored in one color and the non-edges in another, (a simple

version of) the colorful Ramsey theorem says that given

the complete graph on 22n vertices and any coloring of

its edges using roughly n/ log n colors, there must exist

a monochromatic triangle (see Section II-B for the precise

statement). The question is: given a circuit that represents

such a colored graph, what is the computational complexity

of finding a monochromatic triangle? We show that this is

also hard: assuming collision resistant hash functions, find-

ing a monochromatic triangle is impossible for polynomial-

time (in n) algorithms.

Finally, we consider the bipartite version of the Ramsey

problem and prove similar hardness results in the white-box

setting. Specifically, we show a hardness result for finding a

bi-clique or bi-independent set in a bipartite graph based on

the assumption that multi-collision resistant hash functions

exist. These are hash functions for which it is hard to find

multiple inputs that hash to the same output.4 To complement

this result, we show the other direction: the hardness of the

bipartite Ramsey problem implies the existence of multi-

collision resistant hash functions.

Impossibility of a generic transformation: In the con-

text of search problems, the black-box model (in which the

algorithm has only query access to the function) has been

extensively studied as it gives hope to prove unconditional
query lower bounds (see Lovász et al. [5] for example). It is

tempting to try and translate any query lower bound (in the

black-box model) into a white-box lower bound using cryp-

tographic assumption. We show that such a transformation

is impossible to achieve in general for search problems in

TFNP.5 Specifically, we present a search problem in TFNP

3A collision resistant hash is a hash function that shrinks by one bit such
that it is hard to find two inputs that hash to the same output.

4Any collision resistant hash function is also a multi-collision resistant
hash functions, but the other direction is not known.

5We note that our impossibility result only rules out a general transfor-
mation for all search problem in TFNP. It is an interesting question to find
specific problems in TFNP that admit such a transformation.

for which the black-box complexity is exponential but for

any white-box implementation, there exists an algorithm that

finds the solution in polynomial time. Our impossibility re-

sult is unconditional and does not rely on any cryptographic

assumption. It is based on ideas stemming from Canetti

et al. [6] concerning limitations of transferring cryptographic

schemes that use random oracles to ones that do not appeal

to them (see below). Specifically, the construction utilizes

the work of Goldwasser and Kalai [7] on signature schemes

using the Fiat-Shamir paradigm.

The succinct black-box model: In the black-box model,

as we have discussed, solving the Ramsey problem requires

polynomially many queries in the size of the graph (i.e.

exponential in the subgraph we are looking for) and this

is also the case for many other problems in TFNP, such as

PPP,PLS,PPAD and CLS (see [8] and [9]). In this model,

the size of the representation of the function is unbounded

and the running time of the algorithm accessing the object

via queries is unbounded. In contrast, in the white-box model

the size of the representation of the object is limited. We

consider the question of whether the representation of the

function should indeed be unbounded in order to obtain

hardness results and study the succinct black-box model
(see Definition 4). In this model, the function is represented

succinctly but the algorithm is unbounded and has only

black-box access to the function.

For this model we show that any problem in TFNP is easy
(and in particular, the Ramsey problem). That is, there exist

a (deterministic) algorithm that performs only a polynomial
number of queries (in the size of the representation of the

function) and finds a solution. One interesting take-away

from this result is that any exponential query lower bound

(in the black-box model) for a problem in TFNP must use

instances of functions (i.e., “boxes”) of exponential size.

White-box graph property testing lower bounds: Prop-

erty testing studies problems of the type: given the ability

to perform queries concerning local properties of an object,

decide whether the object has some (predetermined) global

property, or it is far from having such a property. The

complexity of a problem is determined by the number

of queries required for an algorithm to decide the above

correctly.

In all classical works in this field, access to the tested

object is given via queries to a black-box. We study the com-

plexity of property testing given a white-box representation.

The object is represented implicitly as a program or a circuit

and is given to the solver. The solver has to decide whether

the object that is encoded in the circuit has a predefined

property or not.

We show that cryptographic assumptions can be useful

to prove that meaningful properties of graphs are hard to

test in the white-box model by any efficient algorithm. The

cryptographic assumption we rely on is the existence of

a collection of lossy functions [10]. A collection of lossy
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functions consists of two families of functions. Functions

in the first family are injective, whereas functions in the

second family are lossy, namely the size of their image

is significantly smaller than the size of their domain. The

security requirement is that a description of a randomly

chosen function from the first family is computationally

indistinguishable from a description of a randomly chosen

function from the second family.

We show that there exists a graph property such that,

assuming a collection of lossy functions, there exists an

efficiently samplable distribution over implicitly represented

graphs over 2n vertices for which testing whether the graph

has the property or is far from having it cannot be decided

by any polynomial-time (in n) algorithm. The property is

whether the graph is a two-source extractor.

A. Graph-hash product

Our white-box hardness results are based on a technique

we call “the graph-hash product”, where we generate a new

graph from an existing one by embedding the nodes of the

new graph via a hash function (see Definition 8). Depending

on the properties of the hash function we get various results.

The key property of this product operation is that if the

hash function is collision resistant, we get that the new

graph looks locally as the original one. All of our hardness

results, including the hardness of (all variants of) the Ramsey

problem and the hardness of the graph property testing, are

based on variants of this technique.

The hash product technique is not restricted to graph

problems: for example, assuming collision resistant hash

functions, we prove hardness for finding a sunflower con-

figuration in a large family of sets of the same size. This is

a natural (total) search problem that arises from the famous

sunflower lemma of Erdös and Rado [11]. We refer to the

full version [12] for more information.

A similar graph-hash product was used by Krajı́cek [13]

relating the proof complexity of the weak pigeonhole prin-

ciple and the proof complexity of the Ramsey theorem.6

B. Cryptographic assumptions and white-box lower bounds

For some search problems it is known how to obtain

hardness in the white-box model under certain cryptographic

assumptions. One of the first examples is due to Papadim-

itriou [14] who showed that the hardness of the class PPP
(a subclass in TFNP) can be based on the existence of

one-way permutations (the hardness can be also based on

the existence of collision resistant hash functions). We refer

to [15] for more information about the assumptions that lead

to white-box hardness in TFNP.

Obfuscation: It has been recently shown that program

obfuscation is very useful for proving white-box lower

bounds for search problems. An obfuscator transforms a

6We thank Pavel Hubácek for telling us about [13].

given program (say described as a Boolean circuit) into an-

other “scrambled” circuit which is functionally equivalent by

“hiding” its implementation details. One could hope to take

the underlying black-box instance, obfuscate it and use this

obfuscated version as the white-box instance. Obfuscation

is a strong and (still) somewhat controversial assumption

(see Ananth et al. [16] for a discussion), but if it could

be used for a general transformation, then we would get a

large class of white-box hardness results. However, there are

a few obstacles in applying such an approach: First, Canetti

et al. [6] (followed by the work of Goldwasser and Kalai [7])

showed that it is impossible to generically translate security

of cryptographic primitives in the random oracle model into

primitives in the standard setting. Second, ideal program

obfuscators (“virtual black-box”) do not exist for general

functionalities [17], [18], so we have to work with weaker

primitives such as indistinguishability obfuscation [18], [19].

One prominent instance of using indistinguishability obfus-

cation in order to prove white-box lower bounds was shown

in the context of PPAD-hardness [20], [21], [9], [22], but

it is hard to see how to use indistinguishability obfuscation

for a more general transformation from black-box hardness

to white-box hardness.

Our white-box hardness results do not use obfuscation

at all and as such bypass the above issues. Furthermore,

our techniques show that weaker (and much better studied)

primitives can be used to hide information in a meaningful

way.

II. PRELIMINARIES

Unless stated otherwise, the logarithms in this paper are

base 2. For a distribution D we denote by x← D an element

chosen from D uniformly at random. For an integer n ∈ N

we denote by [n] the set {1, . . . , n}.
A function negl : N→ R

+ is negligible if for every con-

stant c > 0, there exists an integer Nc such that negl(n) <
n−c for all n > Nc. Two sequences of random variables

X = {Xn}n∈N and Y = {Yn}n∈N are computationally
indistinguishable if for any probabilistic polynomial-time

algorithm A, there exists a negligible function negl(·) such

that |Pr[A(1n, Xn) = 1]− Pr[A(1n, Yn) = 1]| ≤ negl(n)
for all n ∈ N.

A. Search problems in the black-box and white-box models

Let Fn = {f : {0, 1}n → {0, 1}n} be the class of all

circuits f mapping n bits into n bits. We give a definition

of a search problem for the family Fn.7

Definition 1. A search problem S is a relation on 2q(n)
tuples. More precisely, S = ∪∞n=1Sn, where Sn ⊆
({0, 1}n)q(n) × ({0, 1}n)q(n) for a polynomial q(·), such
that: (i) for all f ∈ Fn, there exist x1, . . . , xq(n) ∈ {0, 1}n

7We restrict our attention to the family Fn of length-preserving functions
for simplicity.
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for which
(
x1, . . . , xq(n), f(x1), . . . , f(xq(n))

) ∈ S , and (ii)
S is computable in polynomial time in n. The class of all
such search problems is denoted TFNP.

The tuple (x1, . . . , xq(n)) is called the witness (i.e., the

solution). In general, a witness is not necessarily given as

a sequence of points in the domain {0, 1}n but notice that

any string can be encoded as such a sequence and so our

definition is without loss of generality.

We mainly focus on three models of computation that

differ either by the representation type of the function

f ∈ Fn or by the complexity measure of the solver. The

models that we define and study are the black-box model,

the white-box model, and a new hybrid model we call

succinct black-box. We also mention a fourth model we call

the efficient-succinct black-box model. For the rest of this

subsection, fix a polynomial q = q(n) and a search problem

S ⊆ ({0, 1}n)q × ({0, 1}n)q .

In the black-box model, an algorithm is required to solve

the search problem S while given only oracle access to the

function f . That is, the algorithm provides queries x and

gets back the results y = f(x). The black-box complexity

of a search problem S is the number queries needed to solve

a search problem in the worst-case, while the running time

is unbounded. This model was introduced and studied by

Lovász et al. [5].

Definition 2 (Black-box complexity). The black-box com-
plexity of S, denoted by bbc(S), is bounded by a function
T (·) if there exists an algorithm A that for sufficiently
large n and any f ∈ Fn, makes at most T (n) queries to
f and outputs x1, . . . , xq such that (x1, . . . , xq, f(x1), . . . ,
f(xq)) ∈ S .

In the white-box model, an algorithm is required to solve

the search problem S while given an explicit representation

of the function f (as a circuit). The white-box complexity

of S is the running time (as opposed to number of queries)

needed (measured as a function of the size of the represen-

tation) to solve a search problem in the worst-case. In the

white-box setting, we are mostly interested in solvers that

run in polynomial-time in the size of the function.

Definition 3 (White-box complexity). The white-box com-
plexity of S, denoted by wbc(S), is bounded by a function
T (·) if there exists an algorithm A that for sufficiently
large n, given f ∈ Fn (as a circuit) runs in time T (|f |),
and outputs x1, . . . , xq such that (x1, . . . , xq, f(x1), . . . ,
f(xq)) ∈ S .

In the succinct black-box model, an algorithm is required

to solve the search problem S while given only oracle

access to the function f , however, as opposed to the black-

box model, the succinct black-box complexity of a search

problem S is measured by the number of queries required to

solve the problem as a function of the size of the represen-

tation of f . In particular, if f is represented succinctly by

a polynomial-size (in n) circuit, then an efficient algorithm

can perform only a polynomial number of queries (but its

running time is unbounded).

Definition 4 (Succinct black-box complexity). The succinct
black-box complexity of S, denoted by sbbc(S), is bounded
by the function T (·) if there exists an algorithm A that for
sufficiently large n and any f ∈ Fn, makes at most T (|f |)
queries to f and outputs x1, . . . , xq such that (x1, . . . , xq,
f(x1), . . . , f(xq)) ∈ S .

We also consider a model we call the efficient-succinct
black-box model, which is similar to the succinct black-box

model, except that the solver’s running is bounded (in the

representation size).

B. Ramsey theory

In this section we recall some basic definitions and facts

from Ramsey theory and derive several bounds that will be

useful for us later. We refer to Graham et al. [23] for a

thorough introduction and history of Ramsey theory.

A Ramsey graph is a graph that contains no clique or

independent set of some predefined sizes.

Definition 5 (Ramsey graphs). A graph on N vertices is
called (s, t)-Ramsey if it contains no independent set of size
s and no clique of size t. A graph is called k-Ramsey if it
is (k, k)-Ramsey.

The classical result of Ramsey gives an upper bound

on the size of a graph that does not contain either an

independent set or a clique of some predefined size.

Proposition 1. Every graph on N vertices has either a
clique or an independent set of size 1

2 logN .

A well-known (non-explicit) construction of a Ramsey

graph was given by Erdös [24] as one of the first applications

of the probabilistic method. He showed that most graphs

on N vertices are (2 logN)-Ramsey (see also the book

of Alon and Spencer [25]). It was observed by Naor [26]

that Erdös’s proof actually gives a stronger statement: not

only are most graphs (2 logN)-Ramsey, but such graphs can

actually be sampled with relatively few bits of randomness

(i.e., via a limited-independent family8 or a small-bias

probability space [27]). For completeness, the proof of the

next statement is given in the full version [12]. No explicit

construction of graphs matching these parameters is known.

For a function g : {0, 1}n × {0, 1}n → {0, 1} we define the

corresponding graph G on n vertices where for any u < v
(lexicographic order) it holds that (u, v) is an edge in G iff

g(u, v) = 1.

8A function family H = {h : D → R} is k-wise independent, if
Prh←H[h(x1) = y1 ∨ h(x2) = y2 ∨ . . . ∨ h(xk) = yk] = 1/|R|k ,
for every distinct x1, x2, . . . , xk ∈ D and every y1, y2, . . . , yk ∈ R.

625



Proposition 2. A graph on N vertices sampled via a
(2 log2N)-wise independent hash function is a (2 logN)-
Ramsey graph with probability 1− 1/NΩ(log logN).

Given that there are constructions of k-wise independent

functions mapping {0, 1}n × {0, 1}n → {0, 1} that are

succinct (the size of the representation is polynomial in

n and k even for n output bits), the proposition implies

that it is possible to sample a Ramsey graph (w.h.p.) with

a succinct representation, i.e., the description length of the

graph is polynomial in n. Furthermore, since computing a

(2 log2N)-wise independent function can be done in time

proportional to the size of the description, it is possible to

sample a circuit that implicitly represents the graph.
The property of a graph being (s, t)-Ramsey can be

equivalently phrased as a coloring property of the complete

graph KN on N vertices with two colors. Specifically, the

function that defines whether there is an edge or not can be

thought of a coloring of the full graph with two colors and

the existence of a clique or an independent set of size k is

equivalent to the existence of a monochromatic subgraph of

size k. This raises a natural generalization of the Ramsey

property for graphs with multiple colors.

Definition 6 (Colorful Ramsey graphs). A coloring
ψ :
(
N
2

)→ [m] of the full graph KN with m colors is called
(k1, . . . , km)-Ramsey if there is no monochromatic subgraph
of size ki colored with the color i, for every i ∈ [m].

The colorful Ramsey theorem provides, for a given num-

ber of colors, an upper bound on the size of a clique such that

any coloring must result with a monochromatic subgraph of

a predefined size.

Proposition 3. For every k > 2 and m > 1, it holds that
R(k, . . . , k︸ ︷︷ ︸

m times

) ≤ mmk.

As a corollary of Proposition 3, we obtain a bound

on the number of colors that ensure the existence of a

monochromatic subgraph of size k.

Proposition 4. Consider the full graph on N vertices. For
every k < logN , and every coloring ψ :

(
N
2

)→ [m], where
m = (logN)/k

log logN−log k , there exists a monochromatic subgraph
of size k.

The proofs of Propositions 3 and 4 appear in the full

version [12].

C. Randomness extractors
We consider random variables supported on n-bit strings.

A random variable X is said to have min-entropy k if for

every x ∈ Supp(X) it holds that Pr[X = x] ≤ 2−k. Two

random variables X and Y are said to be ε-close if

Δ(X,Y ) � 1

2
·
(∑

x

|Pr[X = x]− Pr[Y = x]|
)
≤ ε

We say that a function Ext : {0, 1}n×{0, 1}n → {0, 1} is

a (k, ε)-two-source extractor if given any two independent

distributions X and Y with min-entropy k (each), then the

distribution Ext(X,Y ) is ε-close to the uniform distribution

on one bit [28].

It is known that every (k, ε)-two-source extractor gives a

2n × 2n Boolean matrix in which every minor of size at

least 2k × 2k has roughly the same number of 1’s and 0’s,

namely, it has 1/2±ε fraction of 1’s and 0’s (and vice versa).

The probabilistic method shows that most functions are

two-source extractors with very good parameters (in partic-

ular, they work for min-entropy log n+2 log(1/ε) + 1), but

obtaining explicit constructions for such functions has been

a major open problem for a long time. In the last couple of

years there has been remarkable progress and nearly optimal

constructions are now known.

We will actually use the first construction of a two-source

extractor given by Chor and Goldreich [28, Theorem 9].

They showed that the inner product function (also known as

a Hadamard matrix) acts as a good two-source extractor for

k which is roughly n/2:

Proposition 5. Let k = k(n) and ε = ε(n) be such that
2k ≥ n + 2 log(1/ε) + 2. Then, the inner-product function
is a (k, ε)-two-source extractor.

In other words, the 2n×2n inner-products matrix has the
property that every minor of size at least 2k×2k has 1/2± ε
fraction of 1’s and 0’s.

D. Lossy functions and collision resistant hash functions

Collision resistant hash: Recall that a family of collision

resistant hash (CRH) functions is one such that it is hard to

find two inputs that hash to the same output. More formally,

a sequence of families of functions Hn = {h : {0, 1}�1(n) →
{0, 1}�2(n)}, where �1 and �2 are two functions such that

�1(n) > �2(n) for every n ∈ N, is collision resistant if

for every probabilistic polynomial-time algorithms A, there

exists a negligible function negl(·) such that

Pr
h←Hn

[(x, x′)← A(1n, h); h(x) = h(x′)] ≤ negl(n).

CRH functions are known to exist under a variety of

hardness assumptions such as factoring, discrete-log, and

Learning with Errors (LWE). They are not known to exist

under the assumption that one-way functions exist9, and

there are oracle separation results for the two primitives [29].

By default, unless we say otherwise, when we assume

the existence of CRH functions, then we assume a family as

above in which every function shrinks its input by one bit. It

is known that such an assumption is equivalent to a family in

which every function shrinks by any fixed polynomial factor

(by iteratively applying the hash polynomially-many times).

9In contrast, UOWHFs, Universal One-Way Hash Functions, where there
is a fixed target x and the goal is to find x′ that collides with it are known
to exist under the assumption that one-way functions exist.
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Lossy functions: A collection of lossy functions consists

of two families of functions. Functions in the first family

are injective, whereas functions in the second family are

lossy, namely the size of their image is significantly smaller

than the size of their domain. The security requirement

is that a description of a randomly chosen function from

the first family is computationally indistinguishable from a

description of a randomly chosen function from the second

family.

Lossy functions were introduced by Peikart and Wa-

ters [10] and shown to be useful for a variety of fundamental

cryptographic applications. In particular, they were shown

to imply collision resistant hash functions, oblivious trans-

fer protocols, and chosen ciphertext-secure cryptosystems.

Since their introduction they have found numerous other

applications (see [30] for references).

Definition 7 ([10]). A collection of (n, �)-lossy functions is
defined by a pair of algorithms (G,F ) such that:

1) G(1n, b), where b ∈ {0, 1}, outputs a string s ∈
{0, 1}p(n) for some fixed polynomial p(·). If b = 0, then
the algorithm F (s, ·) computes an injective function
fs(·) over {0, 1}n, and if b = 1, then the algorithm
F (s, ·) computes a function fs(·) over {0, 1}n whose
image size is at most 2n−�.

2) The distribution of G(1n, 0) is computationally indis-
tinguishable from the distribution of G(1n, 1).

Lossy functions are known to exist under a variety of

hardness assumptions such as Decisional Diffie-Hellman

(DDH), Learning with Errors (LWE), and factoring related

assumptions (Quadratic Residuosity and Phi-hiding) with

different parameters [10], [31], [32], [30]. In our construc-

tions, we will rely on lossy functions with polynomial

shrinkage (e.g., (n, n−n0.1)-lossy functions). Such functions

are known to exist based on LWE [10], DDH [30] and

Phi-hiding assumptions [31] (but not based on Quadratic

Residuosity). The construction of [31] gives a family of

functions which are length-preserving.

III. HARDNESS OF THE RAMSEY PROBLEM

We show a hard distribution for the Ramsey problem. In

this problem, one is given an implicit and efficient repre-

sentation of the adjacency matrix of a graph on 2n vertices,

and the goal is to find either a clique of size n/2 or an

independent set of size n/2. The implicit representation of

the graph is by a circuit C : {0, 1}n×{0, 1}n → {0, 1} that

represents the adjacency matrix of a graph on 2n vertices.

In terms of Definition 1, we have the q(n) =(
n/2
2

)
and the relation S is such that

(
x1, . . . , xq(n),

f(x1), . . . , f(xq(n))
) ∈ S if and only if the edges

x1, . . . , xq(n) form a clique or an independent set of size

n. That is, the set of vertices touched by some edge in

x1, . . . , xq(n) is of size exactly n, and f(x1) = . . . =
f(xq(n)) = b for some b ∈ {0, 1}.10

Hardness of the Ramsey problem: We say that the Ram-

sey problem is hard if there exists an efficiently samplable

distribution D = {C : {0, 1}n × {0, 1}n → {0, 1}} over

circuits of size polynomial in n that represent graphs on 2n

vertices, such that for every probabilistic polynomial-time

algorithm A, there exists a negligible function negl(·) such

that

Pr
C←D

[v1, . . . , vn/2 ← A(1n, C) ; v1, . . . , vn/2

form a clique or an independent set] ≤ negl(n),

where the probability is over the uniform choice of C ← D
and the randomness of A. All the efficiency requirements

are polynomial in n.

The above problem is indeed in TFNP as it is guaranteed

by Proposition 1 that there always exists a monochromatic

clique or independent set of size n/2. We show that under a

certain cryptographic assumptions, the existence of collision

resistant hash (CRH) functions (see Section II-D), there

exists an efficiently samplable distribution over instances of

the Ramsey problem for which no efficient algorithm can

find a solution. Recall that if CRH functions compressing

by one bit exist, then CRH functions compressing by any

polynomial factor (i.e. from n bits to nδ for any fixed

constant δ > 0) exist. We will use a collision resistant hash

function family H = {h : {0, 1}n → {0, 1}n/4}.
Theorem 1. The Ramsey problem is hard assuming the
existence of collision resistant hash functions.

In the proof of Theorem 1 we use a construction of

Ramsey graphs given in Proposition 2 as well as a type

of graph product operation: the operation takes as input a

graph G on 2n vertices and a hash function h : {0, 1}n+� →
{0, 1}n, where � ≥ 1 and outputs a graph G ⊗ h on 2n+�

vertices, whose edges depend on the edges in G and the

hash function.

Definition 8 (The graph-hash product). Given a graph
G = (V,E), where |V | = {0, 1}n, and a hash function
h : {0, 1}n+� → {0, 1}n, define the graph G⊗h = (V ′, E′)
as a graph on vertices V ′ = {0, 1}n+� with edges E′ such
that (u, v) ∈ E′ if and only if (h(u), h(v)) ∈ E.

Observe that given an efficient representation of G and

an efficient representation of h, we have an efficient repre-

sentation of the graph G⊗ h.

Proof of Theorem 1: Let k = n/4, let H be a family

of collision resistant hash function from n bits to k bits;

such a family H exists under the assumption that collision

resistant hash functions that compress by one bit exist.

Let G = {g : {0, 1}k × {0, 1}k → {0, 1}} be a 2k2-wise

10We say that an edge (u, v) touches the vertices u and v.
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independent hash function family, where each member g ∈ G
defines a graph G on 2k vertices in the natural way (see

below). By Proposition 2, most g ∈ G define a graph G
that does not contain any clique or independent set of size

2k = n/2. The following sampling procedure yields a graph

(V ′, E′), where |V ′| = 2n:

1) Sample a collision resistant hash function h← H and

a function g ← G.

2) Set G = (V,E) to be the graph with |V | = 2k vertices

induced by g (see Proposition 2).

3) Output h and g as representing the graph-hash product

G⊗h = (V ′, E′). That is, for any x, y ∈ V ′ s.t. x < y
we have that edge (x, y) exists iff g(h(x), h(y)) = 1.

The Ramsey challenge on (V ′, E′) is to find a clique or

independent set of size n/2 (since |V ′| = 2n). We reduce

the ability of an adversary to solve the Ramsey problem to

an adversary that breaks the collision resistance of h← H.

Suppose that there exists an adversary A that, given an

instance of the distribution above, finds a clique or an inde-

pendent set of size n/2 = 2k in G⊗h with probability ε > 0
(over the choice of h, g, and the randomness of A). Denote

this event by Win(A, g, h). That is, Pr[Win(A, g, h)] ≥ ε.
Let (v1, . . . , v2k) the solution found by A, and let v′i � h(vi)
for i ∈ [2k]. Let Distinct be the event in which in the

solution output by A, the values v′1, . . . , v
′
2k are distinct.

Then, by the assumption it holds that

Pr[Win(A, g, h)] =

Pr[Win(A, g, h) | Distinct] · Pr[Distinct]+
Pr[Win(A, g, h) | ¬Distinct] · Pr[¬Distinct] ≥ ε

We first argue that Pr[Win(A, g, h) | Distinct] ≤
exp(−n). Indeed, by the definition of the event Distinct,
it holds that v′1, . . . , v

′
2k are distinct, and by the defini-

tion of our graph-hash product, the sequence of vertices

(v′1, . . . , v
′
2k) must form a clique or an independent set of

size 2k in G. However, by Proposition 2 we know that with

probability 1−exp(−n) over g, the graph G does not contain
any such independent set or clique.

Plugging this back into the above equation, we get

Pr[¬Distinct] ≥ ε− exp(−n)
Recall that ε is a non-negligible term and thus we obtain

an algorithm A′ that finds a collision in h with probability

ε − exp(−n), which contradicts the collision resistance

property of the hash function h. To summarize, the algorithm

A′ gets as input a hash function h, samples a function

g ← G, as above, and simulates the execution of A on the

graph-hash product graph G⊗ h. Given the output of A, it

searches the output for a pair of values that form a collision

relative to h and outputs them (it outputs ⊥ in case no such

pair was found). By the above, two such colliding values

will appear in the output with non-negligible probability,

resulting in a collision relative to h.

Hardness for finding a smaller clique or independent
set: We showed that it is hard to find a clique or independent

set of size n/2 in an implicitly represented graph of size

2n. We can show that finding a clique or independent set of
size nδ for any 0 < δ ≤ 1 is hard, by following the proof

of Theorem 1 and using a hash function that maps n bits

into nδ bits (which is implied by the existence of the hash

function we used in Theorem 1).

We can even go below a fixed δ to, say, n1/
√
logn by using

a hash function that compresses a super-polynomial amount

(from n bits to n1/
√
logn bits). This is known to be implied

by a hash function that compresses a single bit albeit with

a super-poly loss in security, but it is not known with only

a poly loss.

Ramsey theory and proof complexity: Ramsey theory

has been extensively studied in the context of proof com-

plexity. In particular, it is known that Ramsey’s theorem has

a polynomial-size bounded-depth Frege proof [33] and it is

related to the weak pigeonhole principle [34].

A. Hardness of the colorful Ramsey problem

The colorful Ramsey problem asks, given an implicit and

efficient representation of a coloring using m colors of the

edges of a graph on 2n vertices, to find a monochromatic

clique of size k. We will see a hard distribution for the

colorful Ramsey problem. We focus in the case where the

goal is to find a monochromatic triangle (i.e., k = 3 above)

for simplicity and remark that the proof generalizes for larger

values of k.

Hardness of the colorful Ramsey problem: We say

that the colorful Ramsey problem is hard if there exists an

efficiently samplable distribution D = {ψ :
(
2n

2

) → [m]}
over colorings of the full graph on 2n vertices, such that

for every probabilistic polynomial-time algorithm A, there

exists a negligible function negl(·) s.t.

Pr
C←D

[v1, v2, v3 ← A(1n, C) ; v1, v2, v3

form a monochromatic triangle] ≤ negl(n),

where the probability is over the uniform choice of C ← D
and the randomness of A.

The above problem is indeed in TFNP whenever m ≤
n/(3 logn), since it is guaranteed by Proposition 4 that

there always exists a monochromatic triangle if there are

only n/(3 logn) colors. The theorem below shows that there

exists a distribution over instances of the colorful Ramsey

problem for which no efficient algorithm can find a solution.

As before, the security of the distribution relies on the

existence of collision resistance hash functions. The proof

is given in the full version [12].

Theorem 2. The colorful Ramsey problem is hard assuming
the existence of a collision resistant hash function family.
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B. The Ramsey problem and Multi-CRH

In Theorem 1 we showed that under the assumption that

CRH functions exist, the Ramsey problem is hard. Here we

study the bipartite version of the Ramsey problem and point

out a tight relationship to a cryptographic primitive we call

multi-collision resistant hash (MCRH) functions.11

A bipartite graph on two sets of N vertices is a bipartite

K-Ramsey graph if it has no K × K complete or empty

bipartite subgraph. Ramsey’s theorem for such graphs says

that every bipartite graph on 2N vertices has a logN×logN
complete or empty bipartite subgraph (see e.g., [36]).12 The

result of Erdös [24] on the abundance of (2 logN)-Ramsey

graphs holds as is for bipartite graphs.

Analogously to the Ramsey problem on graphs, the bi-
partite Ramsey problem is when the graphs are bipartite and

the goal is to find a bi-clique or bi-independent set of a

certain size. We focus on the task of finding a bi-clique or

bi-independent set of size n/4. We say that the bipartite
Ramsey problem is hard if there exists an efficiently sam-

plable distribution D = {C : {0, 1}n × {0, 1}n → {0, 1}}
over circuits of size polynomial in n that represent bipartite
graphs on 2n × 2n vertices, such that for every probabilis-

tic polynomial-time algorithm A, there exists a negligible

function negl(·) such that

Pr
C←D

[u1, . . . , un/4, v1, . . . , vn/4 ← A(1n, C) ;

∃b ∈ {0, 1}, ∀i, j ∈ [n/4] : C(ui, vj) = b] ≤ negl(n),

where the probability is over the uniform choice of C ← D
and the randomness of A. All the efficiency requirements

are polynomial in n.

Roughly, a family of multi-collision resistant hash func-

tions is one such that it is hard to find multiple inputs that

hash to the same output. More precisely, a sequence of

families of functions Hn = {h : {0, 1}�1(n) → {0, 1}�2(n)},
where �1 and �2 are two functions such that �1(n) > �2(n)
for every n ∈ N, is k-multi-collision resistant if for every

probabilistic polynomial-time algorithms A, it holds that

Pr
h←Hn

[(x1, . . . , xk)← A(1n, h); h(x1) = · · · = h(xk)]

≤ negl(n).

By default, unless otherwise stated, we assume that a family

of k-MCRH functions maps strings of length n to strings

of length n− log k. This assumption ensures that a k-multi-

collision exists (but yet it is hard to find). k-MCRH functions

are implied by standard CRH functions (but is seemingly a

11Multiple collisions in hash functions were studied before in the context
of iterated hash functions by Joux [35]. He showed that for such functions,
finding multi-collisions (a set of k messages that hash to the same value)
is not much harder than finding ordinary collisions (pairs of messages that
collide).

12Given a bipartite K-Ramsey graph G on 2N vertices, one can
transform it into a non-bipartite 2K-Ramsey graph H on N vertices. The
graph H is defined by the upper triangle of the adjacency matrix of G.

weaker primitive).

We show that MCRH functions are sufficient and neces-

sary for bipartite Ramsey hardness. The proof appears in the

full version [12].

Theorem 3. If the bipartite Ramsey problem is hard, then
there exists a family H = {h : {0, 1}n → {0, 1}n/2} of n/4-
MCRH functions.

Furthermore, if there exists a family H = {h : {0, 1}n →
{0, 1}

√
n/8} of

√
n-MCRH functions, then the bipartite

Ramsey problem is hard.

Subsequent work: Following this work, the notion of

MCRH has been studied in depth showing a variety of

applications such as statistically-hiding commitments with

short communication and various types of efficient zero-

knowledge protocols [37], [38], [39].

IV. HARDNESS OF TESTING AN EXTRACTOR

In this section we present a graph property which is hard

to test in the white-box setting. Specifically, we present a

property Π and a distribution over succinctly-represented

graphs for which efficiently deciding whether an instance in

the distribution has the property Π or is far from having the

property Π is impossible (under appropriate cryptographic

assumptions). We briefly recall the notions related to (graph)

property testing and then describe our main result. A more

elaborate introduction can be found in [40] and references

therein.

A property Π is simply a set of elements in a universe

of interest. A property Π is a graph property, if it is a set

of graphs closed under graph isomorphism. That is, if for

every graph G = (V,E) on N vertices and any permutation

π on V it holds that G ∈ Π if and only if π(G) ∈ Π, where

π(G) = (V,E′) and E′ = {(π(u), π(v)) | (u, v) ∈ E}. A

graph G = (V,E) on N vertices is said to be ε-far from a

property Π if for every N -vertex graph G′ = (V ′, E′) that

has the property Π (i.e., G′ ∈ Π), it holds that |E�E′| ≥
ε · (N2 ) (the operator � denotes symmetric difference).

Definition 9 (White-box property testing). An ε-tester for a
graph property Π is a probabilistic machine that, on input a
Boolean circuit C : {0, 1}n×{0, 1}n → {0, 1} representing
the adjacency matrix of a 2n-vertex graph G, outputs a
binary value that satisfies:

1) If G has the property Π, then the tester outputs 1 with
probability at least 2/3.

2) If G is ε-far from Π, then the tester outputs 1 with
probability at most 1/3.

The above definition naturally generalized to bipartite

graphs (and properties of bipartite graphs).

The property of being an extractor: The graph property

Π we are interested in is being a two-source extractor: a

bipartite graph G = (U, V,E), where |U | = |V | = 2n, is

(k, δ)-balanced if for every set U ′ ⊆ U and V ′ ⊆ V of
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size |U ′| = |V ′| = 2k, the induced subgraph GU ′,V ′ has
1/2 ± δ fraction of edges. The induced subgraph GU ′,V ′ =
(U ′, V ′, EU ′,V ′) is defined by (u, v) ∈ EU ′,V ′ if and only

if (u, v) ∈ E, u ∈ U ′ and v ∈ V ′.
We present a distribution over succinctly represented

(bipartite) graphs for which testing the above property is

hard. The hardness reduces to breaking the security of a

collection of lossy functions described in Section II-D.

Theorem 4. Assume the existence of a collection of
(n, 2n/3)-lossy functions and consider the bipartite graph
property Π of being (0.52n, 2−n/2000)-balanced. There exist
a constant ε > 0 and a distribution over succinctly repre-
sented bipartite graphs on 2n vertices for which any ε-tester
for Π must run in super-polynomial-time.

Observe that the existence of a collection of lossy func-

tions directly implies white-box hardness of testing whether

a given function is injective or far from being such (i.e.,

lossy), but the theorem proves hardness for a graph property.

The proof of the theorem appears in the full version [12].

V. IMPOSSIBILITY OF A GENERAL TRANSFORMATION

In this section, we show (unconditionally) that there

cannot be a general transformation from a black-box lower

bound, to a white-box lower bound. That is, we show that

there exists a problem that has exponentially high black-box

complexity, however, is solvable in polynomial time given

any white-box implementation of the search function.

We first give an informal overview of the problem we

define. Consider the problem of finding a small circuit that

is consistent with a large set of pairs (xi, yi). In particular,

the set will be larger than the size of the circuit. In the

black-box model, these points will be completely random

and thus the task of finding a small circuit that is consistent

is impossible (since one cannot compress random bits). On

the other hand, in the white-box model, given any circuit that

computes these points, the task becomes completely trivial:

simply return the circuit in hand.

This approach raises two main difficulties. First, this

problem does not always have a solution in the black-box

model (which is not consistent with the definition of a search

problem). Second, the solution has no a priori bound on its

size.

The first problem is solved by taking any search prob-

lem with proven high black-box complexity (e.g., PPP or

PWPP). Notice that this problem might have high white-box

complexity as well. Then, we modify our search problem to

be an OR of the two problems. That is, either find a small

consistent circuit or solve the second search problem. In

the black-box model, the complexity of the new problem

remains high, and moreover, a solution always exists. In

the white-box model, the problems remains solvable in

polynomial time.

The second problem is solved as by instead of giving

the circuit as a solution, giving a short commitment to the

circuit and then proving that this commitment to a circuit

is consistent on a random value. To achieve this, we use

techniques such as Kilian’s protocol combined with the Fiat-

Shamir paradigm to remove interaction in the random oracle

model (in the black-box model we have a random oracle!).

The search problem we define is the one considered

by Goldwasser and Kalai [7] in the context of showing

limitations for the Fiat-Shamir paradigm. They showed that

there exists a 3-round public-coin identification scheme for

which the Fiat-Shamir paradigm yields an insecure digital

signature with any hash function in the standard model.

This signature scheme naturally gives rise to a search

problem: Given the public parameters of the scheme, find

a valid signature for an arbitrary message. To make this

problem in TFNP, we define the problem of either finding

a valid signature as above or finding a collision in a

compressing function. The latter has a guaranteed solution

so this defines a valid search problem in TFNP. More details

can be found in the full version [12].

VI. THE SUCCINCT BLACK-BOX MODEL

We define and study a new model of computation which

we call succinct black-box. In this model, as in the black-

box model, the solver has only query access to the object

and it is measured by the number of queries it performs

in order to find a solution. However, in this model (as

opposed to the black-box model), the number of queries

is measured as a function of the size of the representation

of the function. This is similar to the white-box model,

where the running time is measured as a function of the

size of the representation. In particular, if the function has a

polynomial-sized representation, then an efficient algorithm

in this model can perform only a polynomial number of

queries (but the running-time may be arbitrary).

We show that for any problem in TFNP, there exists

a deterministic procedure that performs only a polynomial
number of queries (in the size of the representation of the

function) and finds a valid solution. The proof appears in

the full version [12].

Theorem 5. For any search problem S ∈ TFNP it holds
that sbbc(S) is polynomial. In particular, if the representa-
tion size is s and any solution is of size at most k, then the
number of queries is O(sk/ log k).

The assumption that the search problem is in TFNP is

essential for the theorem to hold. To see this, consider the

case of point functions (functions that output 1 at a specific

point and 0 everywhere else) where the goal is to find the

hidden point. There exists a succinct representation (the

point itself) but any algorithm that is only allowed to query

the oracle must make exponentially many queries until it

finds the hidden point.
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Goldberg and Roth [41, Theorem 3.3] investigated the

number of queries needed to find an ε-well supported Nash

equilibrium in multi-player games. They showed that if

the game has a succinct representation, then there is an

algorithm that performs a polynomial number of queries

in the number of players n, the number of actions m, the

description length of the target game, and finds such an

equilibrium. One can view Theorem 5 as a generalization

of that result.13

VII. FURTHER RESEARCH

The immediate direction this work raises is which other

Ramsey-type problems are hard in the white-box model.

Consider, for instance, Schur’s Theorem that states that

for every positive integer m, there exists a number S(m)
such that for every coloring of the numbers in the set

{1, . . . , S(m)} with m colors, there must be x, y and z
colored with the same color such that x+ y = z (see [23],

Chapter 3). This property naturally gives rise to the m-
Schur search problem: Given an implicit representation of

the coloring of the numbers {1, . . . , S(m)}, find x, y and z
colored with the same color and satisfy x+ y = z. Can we

argue that the m-Schur problem is hard?

What are the minimal assumptions needed to obtain

the hardness results for Ramsey? Are one-way functions

sufficient or is there an inherent reason why collision resis-

tant hash functions are needed? For the bipartite Ramsey

problem, we showed that a relaxation of CRH functions

(MCRH functions) is necessary and sufficient.

Our results are “obfuscation-free”, in the sense that we

needed much weaker primitives for obtaining them than in

the recent works of [20], [21], [22]. Can we get similar

results for showing the hardness of complexity classes such

as PLS and PPAD?

We showed the general impossibility of transferring black-

box results to white-box results. One direction which might

be fruitful is to find conditions on the search problems that

do allow for such general transformation from black-box to

white-box. A natural candidate is when the search problem is

defined over graphs, and we are looking for a graph property

(i.e., the decision of S whether to accept or not depends

solely on the presented subgraph and not on the names of

the vertices). Can we prove a transformation in this case?

Can we show an impossibility?
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