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Abstract—We show how to obfuscate a large and expres-
sive class of programs, which we call compute-and-compare
programs, under the learning-with-errors (LWE) assumption.
Each such program CC[f, y] is parametrized by an arbitrary
polynomial-time computable function f along with a target
value y and we define CC[f, y](x) to output 1 if f(x) = y
and 0 otherwise. In other words, the program performs an
arbitrary computation f and then compares its output against
a target y. Our obfuscator satisfies distributional virtual-black-
box security, which guarantees that the obfuscated program
does not reveal any partial information about the function f
or the target value y, as long as they are chosen from some
distribution where y has sufficient pseudo-entropy given f .
We also extend our result to multi-bit compute-and-compare
programs MBCC[f, y, z](x) which output a message z if
f(x) = y.

Compute-and-compare programs are powerful enough to
capture many interesting obfuscation tasks as special cases.
This includes obfuscating conjunctions, and therefore we im-
prove on the prior work of Brakerski et al. (ITCS ’16) which
constructed a conjunction obfuscator under a non-standard
“entropic” ring-LWE assumption, while here we obfuscate
a significantly broader class of programs under standard
LWE. We show that our obfuscator has several interesting
applications. For example, we can take any encryption scheme
and publish an obfuscated plaintext equality tester that allows
users to check whether a ciphertext decrypts to some target
value y; as long as y has sufficient pseudo-entropy this will
not harm semantic security. We can also use our obfuscator
to generically upgrade attribute-based encryption to predicate
encryption with one-sided attribute-hiding security, and to
upgrade witness encryption to indistinguishability obfuscation
which is secure for all “null circuits”. Furthermore, we
show that our obfuscator gives new circular-security counter-
examples for public-key bit encryption and for unbounded
length key cycles.

Our result uses the graph-induced multi-linear maps of
Gentry, Gorbunov and Halevi (TCC ’15), but only in a carefully
restricted manner which is provably secure under LWE. Our
technique is inspired by ideas introduced in a recent work of
Goyal, Koppula and Waters (EUROCRYPT ’17) in a seemingly
unrelated context.

I. INTRODUCTION

The goal of program obfuscation [Had00], [BGI+01],

[GGH+13b] is to encode a program in a way that pre-

serves its functionality while hiding everything else about

its code and its internal operation. Barak et al. [BGI+01]

proposed a strong security definition for obfuscation, called

virtual black-box (VBB) security, which (roughly) guarantees

that the obfuscated program can be simulated given black-

box access to the program’s functionality. Unfortunately,

they showed that general purpose VBB obfuscation is un-

achievable. This leaves open two possibilities: (1) achieving

weaker security notions of obfuscation for general programs,

and (2) achieving virtual black box obfuscation for restricted

classes of programs.

Along the first direction, Barak et al. proposed a weaker

security notion called indistinguishability obfuscation (iO)
which guarantees that the obfuscations of two functionally

equivalent programs are indistinguishable. In a breakthrough

result, Garg, Gentry, Halevi, Raykova, Sahai and Waters

[GGH+13b] showed how to iO-obfuscate all polynomial-

size circuits using multi-linear maps [GGH13a]. Since then,

there has been much follow-up work on various construc-

tions and cryptanalysis of multi-linear maps, constructions

and cryptanalysis of iO using multi-linear maps, and various

applications of iO. At this point, we have heuristic candidate

constructions of iO which we do not know how to attack,

but we lack a high degree of confidence in their security

and don’t have a good understanding of the underlying

computational problems on which such schemes are based.

It remains a major open problem to construct iO under

standard well-studied assumptions.

Along the second direction, several interesting but highly

restricted classes of programs have been shown to be

virtual black-box obfuscatable. This includes constructions

of (multi-bit) point function obfuscators [Can97], [Wee05],

[CD08], [Zha16] in the random oracle model or under

various (semi-)standard assumptions, hyperplane obfuscators

assuming strong DDH [CRV10], and very recently conjunc-

tion obfuscators, first using multi-linear maps [BR13] and

later a variant of Ring LWE called “entropic Ring LWE”

[BVWW16]. It remains an open problem to understand

which classes of programs can we even hope to VBB

obfuscate to avoid the impossibility results of Barak et al.

In summary, prior to this work, we did not know how

to achieve any meaningful definition of obfuscation for any

expressive class of programs under any standard assumption.

A. Our Results

In this work, we show how to obfuscate a large and

expressive class of programs which we call compute-and-
compare programs, achieving a strong notion of security
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called distributional virtual black box (D-VBB), under the

learning with errors (LWE) assumption. This is the first such

result that allows us obfuscate complex programs under a

standard assumption.

A compute-and-compare program CC[f, y] is parameter-

ized by a function f : {0, 1}�in → {0, 1}�out , represented

as a circuit or a Turing Machine, along with a target value

y ∈ {0, 1}�out and we define CC[f, y](x) = 1 if f(x) = y
and CC[f, y](x) = 0 otherwise. In other words, the program

performs an arbitrary computation f and then compares

the output against a target y. The D-VBB definition of

security says that an obfuscation of CC[f, y] hides all partial

information about the function f and the target value y as

long as they are chosen from some distribution where y has

sufficient min-entropy or (HILL) pseudo-entropy given f .1

We can relax this to only requiring that y is computationally

unpredictable given f , but in that case we also need an

additional mild assumption that there exist pseudo-random

generators for unpredictable sources which holds e.g, in the

random oracle model or assuming the existence of extremely

lossy functions (ELFs) [Zha16]. All our results hold in the

presence of auxiliary input, as long as y remains sufficiently

unpredictable even given f and the auxiliary input.

We also extend our result to multi-bit compute-and-

compare programs MBCC[f, y, z](x) which output a mes-

sage z if f(x) = y and otherwise output ⊥. In this case

we ensure that the obfuscated program does not reveal

anything about f, y, z as long as they are chosen from some

distribution where y has sufficient pseudo-entropy (or is

computationally unpredictable) even given f, z.

When the function f is represented as a Turing Machine

with some fixed run-time t, our obfuscator is succinct
meaning that the run-time of our obfuscator and the size

of the obfuscated program only have a poly-logarithmic

dependence on t. To get this we need to further rely

on true (non-leveled) fully homomorphic encryption (FHE)

which requires a circular security assumption. Assuming

only leveled FHE, which we have under standard LWE, we

get a weakly succinct scheme where the run-time of the

obfuscator depends polynomially on log t, d, where d is the

depth of the circuit computing f .

OBFUSCATING EVASIVE PROGRAMS. We note that

compute-and-compare programs CC[f, y] where y has

pseudo-entropy given f are an example of evasive pro-
grams, meaning that for any input x chosen a-priori, with

overwhelming probability the program outputs 0. When

obfuscating evasive programs, D-VBB security ensures that

one cannot find an input on which it evaluates to anything

other than 0. This may seem strange at first; what is the

point of creating the obfuscated program and ensuring that

it functions correctly on all inputs if users cannot even find

1The HILL pseudo-entropy must be at least λε, where λ is the security
parameter and ε > 0 is an arbitrary constant.

any input on which it does not output 0? However, the point

is that there may be some users with additional information

about y (for whom it does not have much pseudo-entropy)

and who may therefore be able to find inputs on which

the program outputs 1. In other words, the correctness of

obfuscation is meaningful for users for whom y does not

have much pseudo-entropy (but for such users we do not

get any meaningful security), while security is meaningful

for users for whom y has sufficient pseudo-entropy (but for

such users correctness is not very meaningful since they

will always get a 0 output). The work of [BBC+14] shows

that one cannot have (D-)VBB obfuscation for all evasive

functions (with auxiliary input) and our work is the first to

identify a large sub-class of evasive functions for which it

is possible. We show that this type of obfuscation is already

powerful and has several interesting applications.

B. Applications

Obfuscation for compute-and-compare programs is al-

ready sufficiently powerful and expressive to capture many

interesting obfuscation tasks and gives rise to new applica-

tions as well as a simple and modular way to recover several

prior results.

CONJUNCTIONS AND AFFINE TESTERS. We can think of

conjunctions as a restricted special case of compute-and-

compare programs CC[f, y] where the function f(x) simply

outputs some subset of the bits of x. Therefore our result

improves on the work of [BVWW16] which constructed an

obfuscator for conjunctions under a non-standard entropic

Ring-LWE assumption, whereas here we get a conjunction

obfuscator under standard LWE as a special case of our

result. Moreover, our obfuscator also achieves a stronger

notion of security for a broader class of distributions than

the previous constructions.

As another special case which generalizes conjunctions,

we can obfuscate arbitrary affine testers which are parame-

terized by a matrix A and a vector y and test whether an

input x satisfies Ax
?
= y, where security is guaranteed as

long as y has sufficient pseudo-entropy given A.

SECURE SKETCHES. We also show that our obfuscator

allows us to convert any secure sketch [DORS08] into

a (computational) private secure sketch [DS05]. A secure

sketch SS(y) of a string y allows us to recover y given any

string x which is close to y (e.g., in hamming distance)

without revealing all the entropy in y. However, the sketch

may reveal various sensitive partial information about y.

We show how to convert any secure sketch into a private

one, which does not reveal any partial information, by

obfuscating a program that has SS(y) inside it.

PLAINTEXT EQUALITY TESTER. Using our obfuscator, we

can take an arbitrary encryption scheme and obfuscate a

plaintext equality tester CC[Decsk, y] which has a hard-

coded secret key sk and a target plaintext value y and tests
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whether a given ciphertext ct decrypts to Decsk(ct) = y. Or,

more generally, we can evaluate an arbitrary polynomial-

time function g on the plaintext and test if g(Decsk(ct)) = y
by obfuscating CC[g ◦Decsk, y]. As long as the target y has

sufficient pseudo-entropy, our obfuscated plaintext equality

tester can be simulated without knowing sk and therefore

will not harm the semantic security of the encryption

scheme. The idea of obfuscating a plaintext-equality tester

is implicitly behind several of our other applications, and

we envision that more applications should follow.

ATTRIBUTE BASED ENCRYPTION TO ONE-SIDED PREDI-

CATE ENCRYPTION. We show that our obfuscator allows

us to generically upgrade attribute-based encryption (ABE)

into predicate encryption (PE) with one-sided attribute-

hiding security, meaning that the attribute is hidden from

any user who is not qualified to decrypt. Although the recent

work of Gorbunov, Vaikuntanathan and Wee [GVW15] con-

structed such predicate encryption for all circuits under LWE

by cleverly leveraging a prior construction of attribute-based

encryption [BGG+14] under LWE, it was a fairly intricate

non-generic construction with a subtle analysis, while our

transformation is simple and generic. For example, it shows

that any future advances in attribute-based encryption (e.g.,

getting rid of the dependence on circuit depth in encryption

efficiency and ciphertext size) will directly translate to

predicate encryption as well.

WITNESS ENCRYPTION TO NULL IO. A witness encryption

scheme [GGSW13] allows us to use any NP statement x
as a public-key to encrypt a message m. Any user who

knows the corresponding witness w for x will be able

to decrypt m, but if x is a false statement then m is

computationally hidden. We show that our obfuscator for

compute-and-compare programs allows us to convert any

witness encryption (WE) into an obfuscation scheme that

has correctness for all circuits and guarantees that we cannot

distinguish the obfuscations of any two null circuits C,C ′

such that C(x) = C ′(x) = 0 for all inputs x. We call this

notion null iO or niO. We previously knew that iO implies

niO which in turn implies WE, but we did not know anything

about the reverse directions. Our result shows that under

the LWE assumptions, WE implies niO. It remains as a

fascinating open problem whether niO implies full iO.

CIRCULAR SECURITY COUNTER-EXAMPLES. Finally, we

show that our obfuscator gives us new counter-examples to

various circular security problems.

Firstly, it gives us a simple construction of a public-key

bit-encryption scheme which is semantically secure but is

not circular secure: given ciphertexts encrypting the secret

key one bit at a time, we can completely recover the secret

key. This means that, under the LWE assumption, semantic

security does not generically imply circular security for

all public-key bit-encryption schemes. Previously, we only

had such counter-examples under non-standard assumptions

(multi-linear maps or obfuscation) [Rot13], [KRW15]. The

very recent work of Goyal, Koppula and Waters [GKW17b]

provided such a counter-example for symmetric-key bit-

encryption under LWE. Using our obfuscator, we get a

simple and modular counter-example for public-key bit-

encryption under LWE.

Secondly, it gives us a simple construction of a

public-key bit-encryption scheme which is semanti-

cally secure but not circular secure for key cycles

of any unbounded polynomial length �. That is, we

construct a single scheme such that, given a cycle

Encpk1(sk2),Encpk2(sk3), . . . ,Encpk�−1
(sk�),Encpk�(sk1) of

any arbitrary polynomial length �, we can completely re-

cover all of the secret keys. Previously, we had such results

for bounded-length cycles under LWE [AP16], [KW16] or

unbounded-length cycles under iO [GKW17a]. Using our

obfuscator, we get a result for unbounded-length cycles

under LWE. Furthermore, our scheme does not require any

common public parameters.

Thirdly, we consider a compiler proposed by Black,

Rogaway, and Shrimpton [BRS03] which transforms any

semantically secure scheme into a circular secure (and

even Key-Dependent Message secure) one in the random-

oracle model. We show that this compiler fails in the

standard model: under the LWE assumption, there exists a

semantically secure scheme such that, when we apply the

transformation of [BRS03] and replace the random oracle

with any hash function, the resulting scheme fails to be

circular secure.

C. Concurrent and Independent Work of [GKW17c]

The concurrent and independent work of Goyal, Koppula

and Waters [GKW17c] achieves essentially the same results

as this work modulo small differences in presentation and

focus. They define a notion of “lockable obfuscation” which

(in our language) is an obfuscation scheme for multi-bit

compute and compare programs MBCC[f, y, z] where y is

uniformly random and independent of f, z. While we allow

for more general distributions, where y only has pseudo-

entropy/unpredictability given f, z, this can be achieved

generically from lockable obfuscation using a pseudorandom

generator that works with any high pseudo-entropy seed.

Indeed, the main constructions in both works are essentially

identical. Both works also present applications of this type

of obfuscation to one-sided predicate encryption, null iO,

and circular security counter-examples. Our work also shows

applications to private secure sketches and to other obfusca-

tion tasks such as obfuscating conjunctions and affine spaces

while the work of [GKW17c] gives new results showing the

uninstatiability of random oracle schemes.

D. Our Techniques

Our result relies on the graph induced multilinear maps
of Gentry, Gorbunov and Halevi [GGH15]. In the original
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work [GGH15], such maps were used in a heuristic manner

to construct iO and various other applications, but there

was no attempt to define or prove any stand-alone security

properties of such maps. The subsequent work of [CLLT16]

came up with attacks on various uses of such multilinear

maps, showing that some of the applications in [GGH15] are

insecure. However, a series of works also showed that certain

highly restricted uses of these multilinear maps are actually

provably secure under the LWE assumption. In particular,

the works of [BVWW16], [KW16], [AP16], [GKW17b],

[CC17] all either implicitly or explicitly rely on various

provably secure properties of the [GGH15] multilinear map.

Following [BVWW16] we refer to a restricted version of

the [GGH15] scheme as a directed encoding.

Our particular use of directed encodings is inspired by

the recent work of Goyal, Koppula and Waters [GKW17b]

which studied the seemingly unrelated problem of circular

security counterexamples for symmetric-key bit-encryption.

As one of the components of their solution, they described a

clever way of encoding branching programs. We essentially

use this encoding as the core component of our obfuscation

construction. The work of [GKW17b] did not explicitly

define or analyze any security properties of their encoding

and did not draw a connection to obfuscation. Indeed, as we

will elaborate later, there are major differences between the

security properties of the encoding that they implicitly used

in the context of their construction and the ones that we

rely on in our work. We show how to use this encoding to

get a “basic obfuscation scheme” for compute-and-compare

program CC[f, y] where f is a branching program and y
has very high pseudo-entropy. We then come up with generic

transformations to go from branching programs to circuits

or Turing Machines and to reduce the requirements on the

pseudo-entropy of y to get our final result.

DIRECTED ENCODINGS. A directed encoding scheme con-

tains public keys Ai ∈ Z
n×m
q . We define an encoding of

a “small” secret S ∈ Z
n×n
q along the edge Ai → Aj as

a “small” matrix C ∈ Z
m×m
q such that AiC = SAj + E

where E ∈ Z
n×m
q is some “small” noise. For simplicity,

we will just write AiC ≈ SAj where the ≈ hides “small”

noise. Creating such an encoding requires knowing a trap-

door for the public key Ai.

Given an encoding C1 of a secret S1 along an edge A1 →
A2 and an encoding C2 of a secret S2 along an edge A2 →
A3, the value C1·C2 is an encoding of S1·S2 along the edge

A1 → A3 with slightly larger noise. More generally, given

encodings Ci of secrets Si along edges Ai → Ai+1, the

value C∗ =
∏L

i=1 Ci is an encoding of S∗ =
∏L

i=1 Si along

the edge A1 → AL+1 meaning that A1C
∗ ≈ S∗AL+1.

We can also encode a secret S along multiple edges

{A1 → A′1 , . . . , Aw → A′w} simultaneously by

sampling a matrix C ∈ Z
m×m
q such that⎡⎣A1

. . .
Aw

⎤⎦C =

⎡⎣ S ·A′1 +E1

. . .
S ·A′w +Ew

⎤⎦
This can be done the same way as in the single-edge

case given the trapdoor for the matrix B =

⎡⎣A1

. . .
Aw

⎤⎦ with

dimensions (n ·w)×m. The resulting encoding C satisfies

AjC ≈ SA′j for all j ∈ [w] and therefore is an encoding

of S along each one of the edges Aj → A′j separately.

ENCODING BRANCHING PROGRAMS. As a building block,

we define the notion of “encoding” a permutation branching

program P . This encoding is not an obfuscation scheme yet,

since it does not allow us to evaluate the encoded program

and learn the output. However, it’s a useful first step toward

obfuscation.

We think of a boolean permutation branching program

P of input size �in, length L and width w, as a graph

containing (L+1) ·w vertices that are grouped into (L+1)
levels of w vertices each; we denote these vertices by (i, j)
for i ∈ {1, . . . , L + 1}, j ∈ {0, . . . , w − 1}. Each level

i ≤ L is associated with two permutations πi,0, πi,1 over

{0, . . . , w − 1}. For each vertex (i, j) at level i ≤ L we

use the permutations to define two outgoing edges labeled

with 0 and 1 that respectively go to vertices (i+1, πi,0(j))
and (i+1, πi,1(j)) at level i+1. To evaluate the branching

program P on an input x = (x1, . . . , x�in) ∈ {0, 1}�in we

start at the vertex (1, 0) and at each level i ∈ [L] we follow

the edge labeled with the bit x(i mod �in). At the final level

L + 1, we end up at a vertex (L + 1, b) where b ∈ {0, 1}
is the output of the program P (x). See Figure I-D for an

example. By Barrington’s theorem [Bar89], any NC1 circuit

can be converted into a branching program with constant-

width w = 5 and polynomial-length.2

To encode a branching program, we associate a public

key Ai,j with each vertex (i, j) of the branching program.

For each level i ∈ [L] we pick two random secrets

Si,0,Si,1 and create two encodings Ci,0,Ci,1 where Ci,b

encodes Si,b simultaneously along the w edges {Ai,0 →
Ai+1,πi,b(0) , . . . , Ai,w−1 → Ai+1,πi,b(w−1)} that are

labeled with the bit b. For any input x ∈ {0, 1}�in we

can then “evaluate” the encoded branching program on

x to get: D := A1,0 ·
(∏L

i=1 Ci,x(i mod �in)

)
satisfying

D ≈
(∏L

i=1 Si,x(i mod �in)

)
· AL+1,P (x). Note that this

“evaluation” does not allow us to recover the output P (x),

2We depart from the usual definition of branching programs by insisting
that the input-bits are accessed in a fixed order where step i reads bit
i mod �in. However, this is without loss of generality since any branching
program that reads the input in an arbitrary order can be converted into one
of this form at the expense of increasing the length by a factor of �in.
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start 
output 0 

output 1 

(1,0) 

(1,1) 

(1,2) 

(2,0) 

(2,1) 

(2,2) 

(3,0) 

(3,1) 

(3,2) 

(4,0) 

(4,1) 

(4,2) 

   Input bit: 

Figure 1. Example of a branching program of length L = 3, width
w = 3, and input size �in = 2. Solid edges are labeled with 1 and the
dashed edges with 0. For example, on input x = 10 (i.e., x1 = 1, x2 = 0)
the program evaluates to 0. (Technically the above simple example is not a
legal branching program since there are inputs on which it does no evaluate
to 0 or 1, but it is useful to illustrate the concept.)

but only gives us an LWE sample with respect to the matrix

AL+1,P (x) which depends on the output.

We can also encode a branching program P with �out-
bit output, by thinking of it as a sequence of boolean

branching programs P = (P (1), . . . , P (�out)) for each output

bit, where all the programs have a common length L, width

w, and access pattern in which the i’th level reads the

input bit (i mod �in). We essentially encode each boolean

program P (k) separately as described above with fresh and

independent public keys A
(k)
i,j but we use the same secrets

Si,0,Si,1 across all programs. This allows us to evaluate the

entire sequence of encoded programs on some input x and

derive a sequence of LWE samples D(k) ≈ S∗ ·A(k)

L+1,P (k)(x)

with a common secret S∗ =
(∏L

i=1 Si,x(i mod �in)

)
. In other

words, for each output bit k we get an LWE sample with

the secret S∗ and one of two possible matrices A
(k)
L+1,0

or A
(k)
L+1,1 depending on the value of that bit. We show

that under the LWE assumption the above encoding is

“semantically secure”, meaning that it completely hides the

program P .

FROM ENCODING TO OBFUSCATION. We use the

above idea to obfuscate the compute-and-compare program

CC[f, y] where the function f : {0, 1}�in → {0, 1}�out can

be computed via a polynomial-size branching program P =
(P (1), . . . , P (�out)) and the target value is y ∈ {0, 1}�out .

To do so, we simply encode the program P as described

above, but instead of choosing all of the public keys A
(k)
i,j

randomly we choose the keys at the last level L+1 to satisfy∑�out

k=1 A
(k)
L+1,yk

= 0. If y has sufficiently large (pseudo-

)entropy given f than, by the leftover hash lemma, this is

statistically close to choosing the public keys at random and

therefore, by the semantic security of the encoding scheme

for branching programs, the obfuscation does not reveal any

partial information about f or y. To evaluate the obfuscated

program on x, we evaluate the sequence of encoded branch-

ing programs to get LWE samples D(k) ≈ S∗ ·A(k)

L+1,P (k)(x)

and check if
∑�out

k=1 D
(k) ≈ 0.

This gives us our basic obfuscation scheme but several

issues remain. Firstly, it only works for functions f which

can be represented by polynomial length branching programs

rather than all polynomial size circuits or polynomial time

Turing Machines. Secondly, in order to set the parameters

in a way that balances correctness and security, we would

need y to have “very large” pseudo-entropy which depends

polynomially on the length of the branching program L
and the security parameter λ. Ideally, we would like to

only require that y has some non-trivial pseudo-entropy λε

or, better yet, just that it is computationally unpredictable

given f . We show how to solve these problems via generic

transformations described below.

RELATION TO [GKW17B]. The above technique for

encoding branching programs follows closely from ideas

developed by Goyal, Koppula and Waters [GKW17b] in

the completely unrelated context of constructing circular-

security counter-examples for bit-encryption. The technique

there is used as part of a larger scheme and is not analyzed

modularly. However, implicitly, their work relies on entirely

different properties of the encoding compared to our work.

In [GKW17b], the branching-programs being encoded are

public and there is no requirement that the scheme hides

them in any way. Instead, that work relies on hiding the cor-

respondence between the components C
(k)
i,b of the encoded

branching programs and the input bits b that they correspond

to. Their scheme gives out various such components at

different times and if a user collects ones corresponding

to an input x on which f(x) = y this can be efficiently

checked. In our work, we make the correspondence between

the components C
(k)
i,b and the bits b public, in order to

allow the user to evaluate the encoded program on arbitrary

inputs, but rely on hiding the actual branching program being

encoded.

UPGRADING FUNCTIONALITY AND SECURITY. Our ba-

sic obfuscation scheme for compute-and-compare programs

CC[f, y] only works for functions f represented by branch-

ing programs of some polynomial length L and values y with

very large pseudo-entropy that exceeds some polynomial

bound in the security parameter λ and the branching program

length L. We show a series of generic transformations to

upgrade the functionality and security of our scheme.

Firstly, we can reduce the requirement on the pseudo-

entropy of y to only exceeding some small threshold λε

for some constant ε > 0. We do so by applying a pseudo-

random generator (PRG) G and using our obfuscator on the

program CC[G ◦ f,G(y)]. We need an injective PRG in

NC1 that takes as input any seed y with pseudo-entropy λε

and outputs an arbitrarily large number of pseudo-random

bits. Luckily, we have such PRGs under LWE.

Secondly, we can “bootstrap” our obfuscator for branch-

ing programs into one for circuits or Turing Machines

by using a (leveled) fully homomorphic encryption (FHE)
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scheme with decryption in NC1, which is known to exist

under LWE. A similar type of bootstrapping was used to

convert iO for branching programs into iO for circuits in

[GGH+13b], although in our scenario we can get away

with an even simpler variant of this trick. To obfuscate

the program CC[f, y] where f is an arbitrary circuit or

Turing Machine, we first encrypt f via the FHE scheme

and make the ciphertext ct ← Encpk(f) public. We then

obfuscate the program CC[Decsk, y] which is essentially a

“plaintext-equality tester” that checks if an input ciphertext

decrypts to y. Since Decsk is in NC1, we can rely on

our basic obfuscation construction for branching programs

to accomplish this. To evaluate the obfuscated program on

an input x we first perform a homomorphic computation

over ct to derive a ciphertext ct∗ = Encpk(f(x)) and then

run the obfuscated plaintext-equality tester on ct∗. To argue

security, notice that when y has sufficient pseudo-entropy

given f then the obfuscated program CC[Decsk, y] can be

simulated without knowledge of sk and therefore it hides

sk, y. We can then rely on the semantic security of the

encryption scheme to also argue that the ciphertext ct also

hides f . If the function f is represented as a Turing Machine

then our obfuscator is succinct since it only encrypts f but

doesn’t need to run it at obfuscation time. Summarizing,

the above approach generically transforms a compute-and-

compare obfuscator for branching programs into one for

circuits and Turing Machines.

Thirdly, we can reduce the requirement on the distribution

of y even further and only insist that it is computationally

unpredictable given f (for example, f may include a one-

way permutation of y in its description so that y has no

pseudo-entropy given f but still remains computationally

unpredictable). To do so, we use the same trick as pre-

viously by taking a PRG G and obfuscating the program

CC[G ◦ f,G(y)], but now we need an injective PRG that

converts any computationally unpredictable source y into

a long pseudo-random output (but we no longer need the

PRG to be in NC1). Such PRGs exist in the random

oracle model or assuming the existence of extremely lossy

functions (ELFs) [Zha16], which in turn exists assuming

exponential security of the DDH in elliptic curve groups.

Lastly, we construct an obfuscator for multi-bit compute-

and-compare programs MBCC[f, y, z](x) which output

a message z if f(x) = y and otherwise output ⊥.

We again rely on a PRG G and interpret G(y) as out-

putting a series of blocks G0(y), G1(y) . . . , G�msg (y) where

�msg := |z| and each block is sufficiently large. To ob-

fuscate MBCC[f, y, z] we instead obfuscate a series of

single-bit compute-and-compare programs P0 = CC[G0 ◦
f,G0(y)], P1 = CC[G1 ◦ f, u1], . . . , P�msg

= CC[G�msg
◦

f, u�msg ] where we set ui := Gi(y) if zi = 1 and

ui := Gi(y) (denoting the bit-wise complement) if zi = 0.

Let (P̃0, . . . , P̃�msg
) be the obfuscated programs. On input

x we can then evaluate P̃0(x) and if it outputs 0 we output

⊥. Otherwise we can recover each bit zi of z by setting

zi := P̃i(x). Security of the multi-bit obfuscator follows

from the security of the single-bit one and the security of

the PRG.

II. ORGANIZATION

Due to space limitations, this proceedings version of our

paper only presents our “basic obfuscator” for compute-and-

compare programs CC[f, y] where f is a polynomial-length

branching program and y has very high pseudo-entropy

exceeding some polynomial threshold α(λ, L) in the security

parameter λ and the branching program length L. In the full

version of the paper [WZ17] we show how to reduce the re-

quirements on the pseudo-entropy of y to only exceed λε for

an arbitrary ε > 0 or (under additional assumptions) to only

require that y is computationally unpredictable. Furthermore,

we allow f to be an arbitrary circuit or Turing Machine.

Lastly, in the full version we present several applications of

obfuscation for compute and compare programs as described

in the introduction.

III. NOTATION AND PRELIMINARIES

For any integer q ≥ 2, we let Zq denote the ring of

integers modulo q. We represent elements of Zq as integers

in the range (−q/2, q/2] and define the absolute value |x|
of x ∈ Zq by taking its representative in this range. For

a vector c ∈ Z
n
q we write ||c||∞ ≤ β if each entry ci in

c satisfies |ci| ≤ β. Similarly, for a matrix C ∈ Z
n×m
q

we write ||C||∞ ≤ β if each entry ci,j in C satisfies

|ci,j | ≤ β. We say that a distribution χ over Zq is β-bounded

if Pr[|x| ≤ β : x ← χ] = 1. By default, all vectors are

assumed to be row vectors.

Lemma 1 ([Ajt99], [GPV08], [MP12]). There exist PPT al-
gorithms TrapGen, SamPre, Sam with the following syntax:
• (B, td) ← TrapGen(1k, 1m, q) samples a matrix B ∈

Z
k×m
q with a trapdoor td.

• C ← Sam(1m, q) samples a “small” matrix C ∈
Z
m×m
q .

• C ← SamPre(B,B′) gets B,B′ ∈ Z
k×m
q along with

a trapdoor td for B and samples a “small” matrix
C ∈ Z

m×m
q such that BC = B′.

Given integers k ≥ 1, q ≥ 2 there exists some m∗ =
O(k log q), γ = O(k

√
log q) such that for all m ≥ m∗

we have:
1) For any (B, td) ← TrapGen(1k, 1m, q), B′ ∈ Z

k×m
q ,

C ← SamPre(B,B′, td) we have BC = B′ and
||C||∞ ≤ γ (with probability 1).

2) We have the statistical indistinguishability requirement
B

s≈ B′

where (B, td)← TrapGen(1k, 1m, q), B′ $← Z
k×m
q .

3) We have the statistical indistinguishability requirement
(B, td,C)

s≈ (B, td,C′)
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where (B, td) ← TrapGen(1k, 1m, q), C ←
Sam(1m, q), B′ $← Z

k×m
q , C′ ← SamPre(B,B′, td).

All statistical distances are negligible in k and therefore also
in the security parameter λ when k = λΩ(1).

LEARNING WITH ERRORS (LWE). The learning with errors

(LWE) assumption was introduced by Regev in [Reg05]. We

define several variants.

Definition 1 ([Reg05]). Let n, q be integers and χ a
probability distribution over Zq , all parameterized by the
security parameter λ. The (n, q, χ)-LWE assumption says
that for all polynomial m the following distributions are
computationally indistinguishable

(A, sA+ e)
c≈ (A,u)

where A
$← Z

n×m
q , s

$← Z
n
q , e← χm,u

$← Z
m
q .

The work of [ACPS09] showed that the (n, q, χ)-LWE

assumption above also implies security when the secret is

chosen from the error distribution χ:

(A, sA+ e)
c≈ (A,u)

where A
$← Z

n×m
q , s

$← χn, e ← χm,u
$← Z

m
q . Via a

simple hybrid argument, we also get security when S is a

matrix rather than a vector:

(A,SA+E)
c≈ (A,U) (1)

whereA
$← Z

n×m
q ,S

$← χn×n,E ← χn×m,U
$← Z

n×m
q .

The above variant of (n, q, χ)-LWE is the one we will rely

on in this work.

The works of [Reg05], [Pei09], [BLP+13] show that the

LWE assumption is as hard as (quantum) solving GapSVP

and SIVP under various parameter regimes. In particular,

we will assume for any polynomial p = p(λ) there ex-

ists some polynomial dimension n = n(λ), a modulus

q = q(λ) = 2λ
O(1)

, and a distribution χ = χ(λ) which

is β = β(λ) bounded such that q > (λ · β)p and the

(n, q, χ)-LWE assumption holds. Furthermore we can ensure

that H∞(χ) ≥ ω(log λ). We refer to the above as the

LWE assumption when we don’t specify parameters. This

is known to be as hard as solving GapSVP and (quantum)

SIVP with sub-exponential approximation factors, which is

believed to be hard.

IV. OBFUSCATION DEFINITIONS

Consider a family of programs P and let Obf be a PPT

algorithm, which takes as input a program P ∈ P , a security

parameter λ ∈ N, and outputs a program P̃ ← Obf(1λ, P ).
An obfuscator is required to be functionality preserving,

meaning there is some negligible function ν(λ) such that

for all programs P ∈ P with input size n we have

Pr[∀x ∈ {0, 1}n : P (x) = P̃ (x)] ≥ 1− ν(λ),

where the probability is over the choice of P̃ ← Obf(1λ, P ).
In the full version, we give two definitions of security

called distributional VBB and distributional indistinguisha-
bility and show that they are equivalent. Here we only define

the latter notion.

Definition 2 (Distributional Indistinguishability). Let D be a
class of distribution ensembles D = {Dλ}λ∈N that sample
(P, aux) ← Dλ with P ∈ P . An obfuscator Obf for the
distribution class D over a family of program P , satis-
fies distributional indistinguishability if there exists a (non-
uniform) PPT simulator Sim, such that for every distribution
ensemble D = {Dλ} ∈ D, we have

(Obf(1λ, P ), aux)
c≈ (Sim(1λ, P.params), aux),

where (P, aux)← Dλ.

A. Defining Compute-and-Compare Obfuscation

Given a program f : {0, 1}�in → {0, 1}�out along with

a target value y ∈ {0, 1}�out , we define the compute-and-

compare program:

CC[f, y](x) =

{
1 if f(x) = y
0 otherwise

We assume that programs CC[f, y] have some canonical

description that makes it it easy to recover the components

f, y from CC[f, y].
We define three distinct classes of compute-and-compare

programs depending on whether f is represented as a

branching program, a circuit, or a Turing Machine.

BRANCHING PROGRAMS. We define the class PBP
CC of

compute-and-compare programs CC[f, y] where f is a

permutation branching program (see Section V-C for a

formal definition). In this case we define CC[f, y].params =
(1L, 1�in , 1�out) where L denotes the length of the branching

program f .

CIRCUITS. We define the class PCIRC
CC to consist of

programs CC[f, y] where f is represented as a circuit.

We define CC[f, y].params = (1|f |, 1�in , 1�out) where |f |
denotes the circuit size.

TURING MACHINES. Lastly we define the class PTM
CC of

compute-and-compare programs CC[f, y] where the func-

tion f is given as a Turing Machine with some fixed run-

time t. The main advantage of considering Turing Machines

instead of circuits is that the run-time of the obfuscator

P̃ ← Obf(1λ,CC[f, y]) and the size of the obfuscated

program P̃ can be sub-linear in the run-time t. When

we consider an obfuscator for Turing Machines, we also

require that the run-time of the obfuscated program P̃ ,

which is itself a Turing Machine, is poly(λ, t). We define

CC[f, y].params = (1|f |, 1�in , 1�out , t) where |f | denotes

the Turing Machine description size and t denotes the run-

time.
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We will consider distribution ensembles D over compute-

and-compare programs where each distribution D = {Dλ}
in D is polynomial-time samplable. We define the following

classes of distributions:

UNPREDICTABLE. The class of unpredictable distribu-

tions DUNP consists of ensembles D = {Dλ} over

(CC[f, y], aux) such that y is computationally unpredictable

given (f, aux).

α-PSEUDO-ENTROPY. For a function α(λ), the class of α-

pseudo-entropy distributions Dα-PE consists of ensembles

D = {Dλ} such that (CC[f, y], aux) ← Dλ satisfies

HHILL(y | (f, aux)) ≥ α(λ). For a two-argument func-

tion α(λ, L), we define Dα-PE analogously but require

HHILL(y | (f, aux)) ≥ α(λ, L) where L is the length of

the branching program f .

V. BASIC OBFUSCATION CONSTRUCTION

In this section, we construct our “basic obfuscator”

for compute-and-compare programs CC[f, y] where f is

a polynomial-length branching program and y has very

high pseudo-entropy exceeding some polynomial threshold

α(λ, L) in the security parameter λ and the branching

program length L.

In particular, we will prove the following theorem.

Theorem 1. Under the LWE assumption, there exists some
polynomial α = α(λ, L) in the security parameter λ
and branching program length L, for which there is an
obfuscator for compute-and-compare branching programs
PBP
CC which satisfies distributional indistinguishability for

the class of α-pseudo-entropy distributions Dα-PE.

A. Parameters

Throughout this section we rely on the following param-

eters:

• q: an LWE modulus

• n,m: matrix dimensions

• χ: a distribution over Zq

• β: the distribution χ is β-bounded

• w: branching program width; for concreteness we can

set w = 5

The above parameters are chosen in a way that depends on

the security parameter λ and the branching program length

L to ensure that the following conditions hold:

1) The modulus satisfies q > (4mβ)Lλω(1).

2) The distribution χ has super-logarithmic entropy,

H∞(χ) > ω(log λ).
3) In Lemma 1, if we set k = n · w then the values

m∗ = O(k log q) and γ = O(k
√
log q) specified by

the lemma satisfy m ≥ m∗ and β ≥ γ.

4) The (n, q, χ)-LWE assumption holds.

The general LWE assumption we discussed in the prelimi-

naries allows us to choose the above parameters as a function

of λ, L so that the above conditions are satisfied.

B. Directed Encodings

Definition 3 (Directed Encoding). Let Ai,Aj ∈ Z
n×m
q . A

directed encoding of a secret S ∈ Z
n×n
q with respect to an

edge Ai → Aj and noise level β is a value C ∈ Z
m×m
q such

that AiC = SAj+E where ||S||∞, ||C||∞, ||E||∞ ≤ β. We
define the set of all such encodings EβAi→Aj

(S) as

{C : AiC = SAj+E and ||S||∞, ||C||∞, ||E||∞ ≤ β}.
It’s easy to see that the above definition implies that for any

C1 ∈ Eβ1

A1→A2
(S1), C2 ∈ Eβ2

A2→A3
(S2) we have C1C2 ∈

E2mβ1β2

A1→A3
(S1S2).

In particular, we get the following claim:

Claim 1. If Ci ∈ EβAi→Ai+1
(Si) for i ∈ [L] then

(C1C2 · · ·CL) ∈ Eβ(2mβ)L−1

A1→AL+1
(S1S2 · · ·SL).

DIRECTED ENCODING SCHEME. Next we show how to

create directed encodings. We construct a directed en-

coding scheme that lets us create an encoding C of

a secret S with respect to w separate edges {A0 →
A′0 , . . . , Aw−1 → A′w−1} simultaneously. We define

the algorithms (DE.TrapGen,DE.Encode):

• (B, tdB) ← DE.TrapGen(): Output (B, tdB) ←
TrapGen(1w·n, 1m, q) where TrapGen(1k, 1m, q) is de-

fined in Lemma 1. We parse B ∈ Z
w·n×m
q as

B =

⎡⎣ A0

. . .
Aw−1

⎤⎦
with Ai ∈ Z

n×m
q .

• C← DE.Encode(B→ B′,S, tdB): Parse

B =

⎡⎣ A0

. . .
Aw−1

⎤⎦ ,B′ =

⎡⎣ A′0
. . .

A′w−1

⎤⎦ .

Set

H := (Iw ⊗ S) ·B′ +E =

⎡⎣ S ·A′0 +E0

. . .
S ·A′w−1 +Ew−1

⎤⎦
where E =

⎡⎣ E0

. . .
Ew−1

⎤⎦ ← χw·n×m. Output C ←

SamPre(B,H, tdB) where the SamPre algorithm is

defined in Lemma 1.

We prove two properties for the above directed encoding

scheme. One is a correctness property, saying that the value

C sampled above is indeed an encoding of S along each of

the w edges Aj → A′j . The second is a security property,

saying that if we encode the same secret S many times with

respect to different sets of edges Bk → B′k then this can be

simulated without knowing either Bk or B′k.
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Claim 2 (Correctness). For every S with ||S||∞ ≤ β, for
all (B, tdB) ← DE.TrapGen(), all B′ ∈ Z

w·n×m
q and all

C← DE.Encode(B→ B′,S, tdB) it holds that:

∀j ∈ {0, . . . , w − 1} : C ∈ EβAj→A′j
(S)

where B =

⎡⎣ A0

. . .
Aw−1

⎤⎦ ,B′ =

⎡⎣ A′0
. . .

A′w−1

⎤⎦ .

Claim 3 (Security). Let � = �(λ) be any polynomial on
the security parameter. Under the (n, q, χ)-LWE assumption,
there exists an efficiently samplable distribution DE.Sam()
such that the following two distributions are computationally
indistinguishable:

(Bk,B
′
k,Ck, tdBk

)k∈[�]
c≈ (Bk,B

′
k,C

′
k, tdBk

)k∈[�] (2)

where S← χn×n and for all k ∈ [�]:

(Bk, tdBk
)← DE.TrapGen(1λ), B′k

$← Z
w·n×m
q ,

Ck ← DE.Encode(Bk → B′k,S, tdBk
), C′k ← DE.Sam().

The proofs of these claims appear in the full version of

this paper [WZ17].

C. Obfuscating Compute-and-Compare Branching Pro-
grams

We now use the directed encoding scheme to construct

and obfuscator for compute-and-compare branching pro-
grams. First, we formally define our notion of branching

programs. Then we define an encoding scheme for branching
programs. Lastly, we show how to turn this encoding scheme

into an obfuscator.

BRANCHING PROGRAMS (BPS). A boolean permutation

branching program P of input size �in, length L and width

w, is described by a sequence of 2L permutations

πi,b : {0, . . . , w − 1} → {0, . . . , w − 1}
for i ∈ [L], b ∈ {0, 1}.

Given a program P = (πi,b)i∈[L],b∈{0,1} we can evaluate

P (x) on an arbitrary input x ∈ {0, 1}�in . We do by defining

the start state v1 = 0. Then in a sequence of steps i =
1, . . . , L we define vi+1 = πi,x(i mod �in)

(vi). In other words,

in each step i we read the bit in position (i mod �in) of x
and this determines which of the two permutations πi,0, πi,1

to apply to the current state vi. We define the final state

vL+1 to be the output of the program. A valid branching

program ensures that vL+1 ∈ {0, 1} for all inputs x.

Note that we assume a fixed ordering in which the input

bits are accessed, where the i’th step reads the input bit

(i mod �in).
3 This departs from standard definitions that

3Any other fixed access pattern where the i’th step read the ti’th input bit
would work equally well as long as the locations ti ∈ [�in] are fixed/public
and the same for all branching programs. We restrict ourselves to ti =
(i mod �in) for simplicity.

allow the program to read the input in an arbitrary order.

However, we can easily convert any arbitrary branching

program into one that reads its input in the above fixed

order by blowing up the length of the branching program

by a factor of at most �in.

By Barrington’s theorem [Bar89], any NC1 circuit can

be converted into a branching program with constant-width

w = 5 and polynomial-length. In particular, any circuit with

input-size �in and depth d can be computed by a branching

program of length �in · 4d, where the factor of �in comes

from our insistence on having a fixed access pattern to the

input.

We also consider a branching program P with �out-
bit output to consist of �out separate boolean branching

programs P =
(
P (k)

)
k∈[�out]

for each output bit, where

all the programs have a common length L, width w, and

access pattern in which the i’th level reads the input bit

(i mod �in). To evaluate P (x) we separately evaluate each

of the programs P (k)(x) to get each output bit.

ENCODING BPS. We first show how to encode a permu-

tation branching program P =
(
P (k)

)
k∈[�out]

with �out-bit

output. This is not an obfuscation scheme yet since it does

not allow us to evaluate the encoded program and learn the

output. Instead, when we encode the program, we specify

two matrices A
(k)
0 ,A

(k)
1 for each output bit k ∈ [�out]. When

we evaluate the encoded branching program on some input x

we will get LWE tuples D(k) ≈ S∗A(k)

P (k)(x)
with respect to

some common secret S∗ and matrices A
(k)

P (k)(x)
that depend

on the output P (x).

We define the algorithms (BP.Encode,BP.Eval) as fol-

lows.

BP.Encode
(
P, (A

(k)
0 ,A

(k)
1 )k∈[�out]

)
: Takes as input

A
(k)
0 ,A

(k)
1 ∈ Z

n×m
q and a branching program P =(

P (k)
)
k∈[�out]

with �in-bit input, �out-bit output and length

L. Parse P (k) = (π
(k)
i,b )i∈[L],b∈{0,1}.

– For k ∈ [�out] and i ∈ [L] sample (B
(k)
i , td

B
(k)
i

) ←

DE.TrapGen() with B
(k)
i =

⎡⎢⎣ A
(k)
i,0

. . .

A
(k)
i,w−1

⎤⎥⎦.

– For k ∈ [�out] sample the matrix B
(k)
L+1 =⎡⎢⎣ A

(k)
L+1,0

. . .

A
(k)
L+1,w−1

⎤⎥⎦ by setting A
(k)
L+1,0 := A

(k)
0 ,A

(k)
L+1,1 :=

A
(k)
1 and sampling A

(k)
L+1,j

$← Z
n×m
q for j ∈

{2, . . . , w − 1}.
– For i ∈ [L], b ∈ {0, 1}, sample Si,b ← χn×n.

– For i ∈ [L], b ∈ {0, 1}, k ∈ [�out] sample: C
(k)
i,b ←

DE.Encode(B
(k)
i → π

(k)
i,b (B

(k)
i+1),Si,b, tdB(k)

i
), where
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(abusing notation) we define π(B
(k)
i ) =

⎡⎢⎣ A
(k)
i,π(0)

. . .

A
(k)
i,π(w−1)

⎤⎥⎦.

– Finally, output the sequence P̂ =(
A

(k)
1,0,

(
C

(k)
i,b

)
i∈[L],b∈{0,1}

)
k∈[�out]

.

BP.Eval(P̂ , x). To evaluate P̂ on input x ∈ {0, 1}�in , the

evaluation algorithm for all k ∈ [�] computes

D(k) := A
(k)
1,0 ·

(
L∏

i=1

C
(k)
i,x(i mod �in)

)
and outputs the sequence

(
D(k)

)
k∈[�out]

.

We now analyze a correctness and a security property that

the above scheme satisfies. The correctness property says

that when we evaluate the encoded program P̂ on x we

get LWE samples D(k) ≈ S∗A(k)

P (k)(x)
with respect to some

common secret S∗. The security property says that the above

encoding completely hides the branching program P (and in

particular the choice of permutation π
(k)
i,b ) being encoded.

Claim 4 (Correctness). For every branching program P =(
P (k)

)
k∈[�out]

with �in-bit input and �out-bit output, for all

choices of (A(k)
0 ,A

(k)
1 )k∈[�out], and for all x ∈ {0, 1}�in the

following holds. For

P̂ ← BP.Encode
(
P, (A

(k)
0 ,A

(k)
1 )k∈[�out]

)
(
D(k)

)
k∈[�out]

= BP.Eval(P̂ , x)

there exist S∗ ∈ Z
n×n
q , E(k) ∈ Z

n×m
q such that D(k) =

S∗ ·A(k)

P (k)(x)
+E(k) and ||E(k)||∞ ≤ β(2mβ)L−1.

Claim 5 (Security). Under the (n, q, χ)-LWE assumption,
there exists a PPT simulator Ŝim, such that for all ensembles
of permutation branching programs P of length L input
size �in and output-size �out (all parameterized by λ), the
following two distributions are indistinguishable

BP.Encode
(
P, (A

(k)
0 ,A

(k)
1 )k∈[�out]

)
c≈ Ŝim(1λ, (1L, 1�in , 1�out))

where A
(k)
0 ,A

(k)
1

$← Z
n×m
q .

The proofs of the above claims appear in the full version

of this paper [WZ17].

OBFUSCATING BPS. Finally, we are ready to construct

an obfuscator for compute-and-compare programs CC[f, y]
where f : {0, 1}�in → {0, 1}�out is a permutation branching

program of length L. To do so, we simply use the BP

encoding scheme to encode f but we choose the matrices

A
(k)
0 ,A

(k)
1 to satisfy

∑�out

k=1 A
(k)
yk = 0. Then, to evaluate the

obfuscated program on x, we evaluate the encoded program

to get matrices D(k) and check that
∑�out

k=1 D
(k) ≈ 0.

Our construction of an obfuscator Obf(1λ,CC[f, y]) for

compute-and-compare branching programs is defined as

follows. Let f be a BP with input size �in, output size �out,
length L and width w.

• For all k ∈ [�out], b ∈ {0, 1}, except for (k, b) =

(�out, y�out), sample A
(k)
0 ,A

(k)
1 ← Z

n×m
q .

• Set A
(�out)
y�out

:= −∑�out−1
k=1 A

(k)
yk .

• Set f̂ ← BP.Encode
(
f, (A

(k)
0 ,A

(k)
1 )k∈[�out]

)
.

• Create a program P̃ [f̂ ] that takes as input x ∈ {0, 1}�in
and does the following:

– Compute
(
D(k)

)
k∈[�out]

= BP.Eval(f̂ , x). Let

D∗ =
∑�out

k=1 D
(k).

– If ||D∗||∞ ≤ �out ·β ·(2mβ)L−1 then output 1 and

otherwise output 0.

Output P̃ [f̂ ].

We now show that our obfuscator satisfies correctness and

security.

Claim 6 (Correctness). There exists a negligible function
ν(λ) = negl(λ) such that for all branching programs f with
input size �in and output size �out and for all y ∈ {0, 1}�out

we have

Pr
[
∀x ∈ {0, 1}�in : P̃ (x) = CC[f, y](x)

]
≥ 1− ν(λ),

where the probability is over P̃ ← Obf(1λ,CC[f, y]).

Claim 7 (Security). Let α(λ, L) = n·m·log(q)+ω(log λ) =
poly(λ, L). Then there exists a PPT simulator Sim, such that
for every distribution ensemble D = {Dλ} ∈ Dα−PE over
PBP
CC the following two distributions are indistinguishable

(Obf(1λ,CC[f, y]), aux)
c≈ (Sim(1λ, (1L, 1�in , 1�out)), aux)

where (CC[f, y], aux)← Dλ.

The proofs of the above claims appear in the full version

of this paper [WZ17]. The combination of Claim 6 and

Claim 7 proves Theorem 1.
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