
Garbled Protocols and Two-Round MPC from Bilinear Maps

Sanjam Garg

Dept. of Computer Science
University of California, Berkeley

Berkeley, USA
Email: sanjamg@berkeley.edu

Akshayaram Srinivasan

Dept. of Computer Science
University of California, Berkeley

Berkeley, USA
Email: akshayaram@berkeley.edu

Abstract—In this paper, we initiate the study of garbled
protocols — a generalization of Yao’s garbled circuits construc-
tion to distributed protocols. More specifically, in a garbled
protocol construction, each party can independently generate
a garbled protocol component along with pairs of input
labels. Additionally, it generates an encoding of its input. The
evaluation procedure takes as input the set of all garbled
protocol components and the labels corresponding to the input
encodings of all parties and outputs the entire transcript of the
distributed protocol.

We provide constructions for garbling arbitrary protocols
based on standard computational assumptions on bilinear
maps (in the common random string model). Next, using
garbled protocols we obtain a general compiler that compresses
any arbitrary round multiparty secure computation protocol
into a two-round UC secure protocol. Previously, two-round
multiparty secure computation protocols were only known
assuming witness encryption or learning-with errors. Benefiting
from our generic approach we also obtain protocols (i) for
the setting of random access machines (RAM programs) while
keeping communication and computational costs proportional
to running times, while (ii) making only a black-box use of
the underlying group, eliminating the need for any expensive
non-black-box group operations. Our results are obtained
by a simple but powerful extension of the non-interactive
zero-knowledge proof system of Groth, Ostrovsky and Sahai
[Journal of ACM, 2012].

Keywords-Circuit Garbling, Bilinear Maps, Universal Com-
posability

I. INTRODUCTION

Yao’s garbled circuits [60] (also see [3], [47], [9]) are

enormously useful in cryptography. In a nutshell, Yao’s

construction on input a circuit C generates a garbled circuit

C̃ along with input labels {labi,0, labi,1} such that C̃ and

{labi,xi
} can be used to compute C(x) and nothing more.

Over the years, Yao’s construction has found numerous

applications (to name a few [1], [7], [21], [43], [32]) and

several extensions [29], [4], [49] have been investigated.

Furthermore, in light of their usefulness, substantial research

has been invested to improve the practical efficiency of these

constructions [7], [46], [55], [8], [45], [61], [39].

Garbled circuits, while tremendously useful in the two-

party setting, when used in the multiparty setting lead to

comparatively inferior solutions. For example, Yao’s garbled

circuits along with a two-round 1-out-of-2 oblivious transfer

(OT) protocol [57], [2], [51], [40] gives an easy solution to

the problem of (semi-honest) two-round secure computation

in the two-party setting. However, the same problem for

the multiparty setting turns out to be much harder. Beaver,

Micali and Rogaway [7] show that garbled circuits can be

used to realize a constant round multi-party computation

protocol. However, unlike the two-party case, this protocol

is not two rounds.

A. Garbled Protocols

In this paper, we introduce a generalization of Yao’s

construction from circuits to distributed protocols. We next

elaborate on (i) what it means to garble a protocol, (ii) why

this notion is interesting, and (iii) if we can realize this

notion.
What does it mean to garble a protocol? Consider an

arbitrary protocol Φ over n-parties P1, . . . , Pn with inputs

x1, . . . , xn, respectively. Just as in garbled circuits, a garbled

protocol construction allows each party Pi to independently

generate a garbled protocol component Φ̃i along with input

labels {labij,0, labij,1}. However, now the party Pi addition-

ally generates an input encoding x̃i. Correctness requires

that the set of all garbled protocol components {Φ̃i}i∈[n]
and the set of labels corresponding to the input encodings

of all parties {labij,zj}i∈[n],j∈[|z|] where z := x̃1‖ · · · ‖x̃n

can be used to generate the entire transcript of the protocol

Φ. Detailing the security guarantee, we require the existence

of an efficient simulator Sim such that for any set H ⊆ [n]
of honest parties and inputs {xi}i∈[n] of the parties we have

that

{Φ̃i, lab
i
x̃1‖...‖x̃n

, x̃i}i∈[n] c≈ Sim(H,Φ(x1, . . . xn), {xi}i�∈H)

where
c≈ denotes computational indistinguishability and

Φ(x1, . . . , xn) denotes the transcript of Φ.
Why consider Garbled Protocols? We illustrate the

power of garbled protocols by showing how they can be

used to realize a two-round (semi-honest) multiparty secure

computation protocol. Looking ahead, our protocol is anal-

ogous to the construction of two-round, two party secure

computation protocol using garbled circuits.

Take any n-party secure computation protocol Φ and let

x1, . . . , xn be the respective inputs of the parties. Each party

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.60

588

starts by independently generating
{
Φ̃i, {labij,0, labij,1}, x̃i

}
.

In the first round, each party distributes the generated values

x̃i to every other party. On receiving the first messages of

all other parties, each party sends its second round message(
Φ̃i, {labij,zj}

)
(with z := x̃1‖ · · · ‖x̃n) to every other party.

Finally, by correctness of garbled protocols we have that

each party can locally execute the garbled protocol to obtain

the output from the transcript Φ(x1, . . . xn). On the other

hand, the security of the garbled protocols and Φ ensure

that nothing else beyond the output is leaked.

Can we garble protocols? Our main result is a garbled

protocols construction based on standard computational as-

sumptions on bilinear maps [12], [42]. A bit more precisely:

Informal Theorem. Assuming the subgroup decision as-
sumption or the decision linear assumption on groups with
bilinear maps there exists a garbled protocol construction
(in the common reference string model).

We also show a modification of this construction such that

it makes only black-box use of the underlying group and

avoids any expensive non-black-box group operations.

B. Applications to Two-Round Multiparty Secure Computa-
tion

Using the above primitive, we obtain a general compiler

that converts an arbitrary (polynomial) round (semi-honest)

multi-party secure computation protocol into a two-round

UC secure [16] protocol against static adversaries. Previ-

ously, such compilers [22], [34] were known under stronger

computational assumptions such as indistinguishability ob-

fuscation [6], [23] or witness encryption [24].1

Furthermore, instantiating this compiler with any multi-

party secure computation protocol (e.g., the one by Gol-

dreich, Micali, and Wigderson [30]) we obtain the first

two-round multiparty computation protocol based on bilin-

ear maps. Prior to this work, constructions of two-round

multiparty computation protocols [50], [54], [15] were only

known based on lattice assumptions such as the learning-

with-errors [58].2 We also obtain the following extensions:

- Black-Box Use of the Group: With the goal of obtain-

ing a two-round multiparty computation protocol that

makes black-box use of the underlying cryptographic

primitives, we modify our compiler from above. More

specifically, building on the non-interactive OT pro-

tocol of Bellare and Micali [10] (based on the CDH

assumption [20]), we obtain a compiler that converts

1We note that the recent constructions of lockable obfuscation [35], [59]
based on standard assumptions such as learning with errors is insufficient
to obtain such a compiler since these works assume that the lock value has
some min-entropy.

2In two recent works, Boyle et al. [13], [14] also obtain constructions of
two-round multiparty computation based on DDH. However, their results
are applicable only for the setting of constant number of parties — a special
case of our result. Also, they assume the need for public-key infrastructure
while we just assume a common reference string.

any arbitrary round (malicious secure) protocol ΦOT

in the OT-hybrid model into a two-round UC secure

protocol against static adversaries while only making

black box use of the underlying group.

Instantiating, this new compiler with an information

theoretic protocol in the OT-hybrid model [44], [41]

yields a two-round multiparty computation protocol

based on bilinear maps while avoiding expensive non-

black-box use of the underlying group.3

- Extension to RAM programs: Instantiating the above

compilers with appropriate multi-party secure compu-

tation protocols for RAM programs [53], [33], we also

obtain the first two-round multiparty secure RAM com-

putation protocol (and its black-box version) without

first converting the RAM program to a circuit based on

standard techniques [19], [56].

We note that the multi-key fully-homomorphic encryp-

tion [5], [48], [18], [50], [54], [15] based two-round se-

cure computation techniques do not work for the setting

of RAM programs. This is because fully-homomorphic

encryption techniques need interaction for disclosing

what locations are accessed by the oblivious RAM

programs.4 On the other hand, our use of garbled

protocols does not suffer from this limitation.5

II. TECHNICAL OVERVIEW

At the heart of our garbled protocols construction is

a simple but powerful extension of homomorphic proof

commitments scheme. This primitive was first considered by

Groth, Ostrovsky and Sahai [36] who used it to realize a non-

interactive zero-knowledge proof system based on bilinear

maps. Below we start by (i) recalling GOS construction

of homomorphic proof commitments, (ii) how we augment

them, and (iii) use them to realize garbled protocols. Finally

we give details on how to obtain two round, secure mul-

tiparty computation protocol making black-box use of the

underlying group.

A. Starting Point: Homomorphic Proof Commitments

A homomorphic proof commitment scheme is a (non-

interactive) commitment scheme com that supports homo-

morphic operations and provides some additional proof

properties. In particular, it is additively homomorphic, i.e.,

com(b0+ b1; r0+ r1) = com(b0; r0) · com(b1; r1) where the

message space is over Zp. Furthermore, given a commitment

3However, unlike our non black-box protocol, the length of the common
reference string of our black-box construction grows linearly with the
number of parties.

4An oblivious RAM program is a RAM program compiled with an
oblivious RAM scheme [52], [31].

5Another approach would be to use garbled RAM [49], [28], [27], [26]
However, those constructions suffer from the same limitation as Yao’s
garbled circuits in terms of supporting multiparty protocols. Specifically,
garbled RAM can be used to construct two-round two-party secure compu-
tation protocol, but the multiparty protocol is only (larger than two) constant
rounds [49], [25].

589

c = com(b; r), the corresponding committed value b and

randomness r, a prover can generate a NIZK proof proving

that b ∈ {0, 1} without leaking anything else about the value

b.

GOS show that homomorophic proof commitments can be

used to generate NIZK proofs for arbitrary NP-statements.

This is done in two steps:

1) First, GOS show that given three commitments c0 =
com(b0; r0), c1 = com(b1; r1), and c2 = com(b2; r2)
a prover given b0, b1, b2 and r0, r1, r2 can generate a

NIZK proof proving that b2 = NAND(b0, b1). This,

in fact, can be done very simply by just proving that

each one of b0, b1, b2 and b0+b1+2b2−2 is in {0, 1}.
In other words, the prover generates a proof showing

that each one c0, c1, c2 and c0 · c1 · c22 · com(−2; 0)
is commitments to a value in {0, 1}. Looking at the

table of a NAND gate (as GOS prove), it is not too

hard to prove that these conditions are simultaneously

satisfied if and only if values b2 = NAND(b0, b1).
2) Using the above trick, Groth et al. provide NIZK

proofs for arbitrary NP-statements by converting them

to a circuit SAT instance. More specifically, given

a circuit C composed entirely of NAND gates, a

prover can prove that ∃wit such that C(wit) = 1. The

prover achieves this as follows: it commits to the value

assigned to every wire of the circuit C on input wit
and proves that (i) each of the committed values is in

{0, 1}, (ii) each NAND gate in C has been computed

correctly, and (iii) the output of the circuit is 1.

Now, we very briefly describe how the GOS construction

works in the setting of composite order groups with bilinear

maps. GOS commitments are generated with respect to a

commitment key which can either be in the binding mode

or in the hiding mode and keys generated in the two modes

are computationally indistinguishable.6 The commitment key

ck consists of a description of a source group G (of order

n = pq), a target group GT , a bilinear map e : G×G→ GT

and a group element h. In the binding mode, h is chosen

randomly from the subgroup7
Gq and in the hiding mode h

is chosen randomly from G. The commitment keys in the

two modes are indistinguishable from the sub-group decision

assumption. The commitment c to a message m ∈ Zp

using randomness r is given by gmhr. When h is chosen

randomly from G, c information theoretically hides m and

when h is chosen from the sub-group Gq there exists unique

(m, r) ∈ Zp × Zn such that c = gmhr. The homomorphic

property is easy to observe. The proof π certifying that c
is a commitment to 0 or 1 is given by (g2m−1hr)r. The

verification procedure relies on fact that if c is of the form

6In particular, the commitments generated using the binding key are
perfectly binding whereas the ones generated using the hiding key are
perfectly hiding.

7Recall that Gq is a sub-group of G with order q

hr or ghr then either c or cg−1 have order 1 or q (when h
is chosen in the binding mode). This is ensured by checking

if e(h, π) = e(c, cg−1).

B. New Technical Tool: Homomorphic Proof Commitments
with Encryption

Armed with the above understanding of homomorphic

proof commitments, we now explain how to augment them

to support an encryption, decryption functionality. Specifi-

cally, an encryptor given a commitment c and a message msg
can generate a ciphertext that can be efficiently decrypted

using a proof π certifying the fact that c is a commitment

to 0 or 1. Our security requirement is that if c is not a

commitment to 0 or 1 then semantic security holds, i.e., for

all msg,msg′ encryptions of msg are indistinguishable from

encryptions of msg′. Note that if c is not a commitment to 0
or 1 then the prover cannot generate a proof certifying this

fact. We call this primitive a homomorphic proof commit-

ment with encryption. A careful reader might have noticed

that the security provided by a homomorphic proof commit-

ment with encryption is very similar to the security guarantee

of a witness encryption [24]. Indeed, homomorphic proof

commitment with encryption is a witness encryption scheme

for a special language.

Next, we describe how the above abstract notion can be

realized. An elegant aspect of our work is that this augmen-

tation to the homomorphic proof commitments of GOS can

be done without changing their construction. The encryption

procedure on input a commitment c = gmhr and a message

msg essentially outputs the ciphertext (hs, e(cs, cg−1) ·msg)
for a randomly chosen s← Zn.8 To decrypt this ciphertext

using a proof π = (g2m−1hr)r, compute e(hs, π) and

use it to unmask the message msg. The key idea while

proving security is that when h is chosen in the binding

mode, hs “loses” some information about s — specifically,

s mod p is uniformly distributed even given hs. Further-

more, this entropy in s is transferred to the masking factor

e(cs, cg−1) = e(hs, π)e(g, g)sm(m−1) when m is not 0 or

1. This allows us to argue that the message msg remains

hidden.

C. Realizing Garbled Protocols

In this subsection we highlight the key challenge in

constructing garbled protocols for the multiparty setting and

how homomorphic proof commitments with encryption can

be used to overcome this barrier.

The key challenge. With the goal of explaining the

challenge involved, we start by considering garbled protocols

in the easy case of two parties. We will focus only on

how P1 generates its garbled protocol components as the

components generated by P2 will be analogous. For the

case of two parties, P1 can just garble the next message

8The actual construction uses a strong randomness extractor and we avoid
this in the informal overview.

590

functions of the protocol Φ (using Yao’s garbled circuits)

and send them over to the P2. The only issue with this

approach is how does P1’s garbled next message functions

read the messages generated by P2 in the execution of Φ.

A natural idea is to have P2 commit to its input x2 (and

also its randomness in case Φ is a randomized protocol) in

its input encoding x̃2 which will then be hard-coded inside

the garbled next-message functions. Next, P1 can generate

garblings of next message functions in a manner so that

P2 would be able to evaluate those garblings as long as it

can prove to P1’s garbled circuit that it has been generating

its own messages consistent with the committed input x2.

At a very high level this can be achieved by letting P1’s

garbled next message functions output ciphertexts containing

encryptions of certain labels that P2 can decrypt only if it

has been generating its own messages correctly.

However, the techniques from the literature for doing

this based on standard assumptions involve P2’s secret state

in the decryption step. Consequently, these techniques fail

even for the three party setting because the third party, say,

P3 does not have access to P2’s secret state. Gordan et

al. [34] (building on Garg et al. [22]) observe that witness

encryption [24] for NP can be used to solve this problem.

The idea is: (i) P1 outputs a witness encryption which allows

decryption given just a NIZK proof certifying the correctness

of computation, and (ii) P2 outputs a proof for certifying

this very fact. Next, using the proof, P3 can decrypt P1’s

ciphertext while secrecy of P2’s state is also maintained.

In this work, we show that the same intuition can be

realized using homomorphic proof commitments with en-

cryption. However, recall that homomorphic proof com-

mitments with encryption are very weak. The encryption

process cannot in “one-shot” verify that P2 generated its

messages correctly. Instead, our idea for this is that P1 keeps

P2 on a “very tight leash,” making sure that P2 computes

every NAND gate in the execution of Φ correctly.

The rest of this subsection is organized as follows. (1)

We start by making some assumptions on the structure of

distributed protocol Φ. We note that these assumptions can

be made without loss of generality. (2) Next, we give a

garbling scheme for such structured protocols.

Structure of Φ. Let Φ be a n-party protocol. For the

purposes of this informal overview, we will assume that Φ is

deterministic. Let T be the round complexity of the protocol.

We assume that each party Pi maintains a local state that

is updated at the end of every round. The local state is a

function of the input and the set of messages received from

other parties.

At the beginning of the tth round, every party Pi runs a

program Φi on input t to obtain an output (i∗, f, g). 9 Here,

i∗ denotes the active party in round t. The active party Pi∗

computes one NAND gate on a pair of bits of its state and

9We assume that Φ1(t) = Φ2(t) = . . . = Φn(t) for every t ∈ [T].

writes the computed bit to its state. The inputs to the NAND

gate are given by the bits in the indices f and g of the local

state of Pi∗ . Additionally, for a (pre-determined) subset of

rounds Bi∗ ⊆ {t ∈ [T] : (i∗, ·, ·) = Φi(t)}, Pi∗ outputs the

computed bit to other parties. In this case, all the parties

copy this bit to their state.

We note that any protocol can be compiled to follow

this format at an additional cost of increasing the round

complexity by a polynomial factor.

Garbling Scheme for Protocols. The garbled protocol

component Φ̃i generated by Pi consists of a sequence of

T garbled circuits and a set of labels for evaluating the

first garbled circuit in the sequence. These garbled circuits

have a special structure, namely, the tth garbled circuit in

the sequence outputs the labels for evaluating the (t+ 1)th

garbled circuit and thus starting from the first garbled circuit

we can execute every garbled circuit in the sequence. At

a high level, the tth garbled circuit corresponds to the

computation done by party Pi in the tth round of the

protocol Φ. In a bit more details, the tth garbled circuit takes

as input the local state obtained after the first t− 1 rounds,

updates the local state and outputs the labels corresponding

to the updated state for evaluating the next garbled circuit.

This ensures that at the end of the T th evaluation, we can

obtain the transcript of the protocol from the final local state

of party Pi. The encoding of an input xi is given by a set

of homomorphic commitments {ci,k} to each individual bit

of the input xi.

To look a bit more closely into the working of the tth

garbled circuit, let us assume that Pi is the active party in

the tth round. Our assumption on the structure of Φ implies

that in the tth round, Pi has to update its local state by

computing a NAND of two bits in its current state and write

the output to a specific location. Further, if t ∈ Bi, Pi has

to communicate this bit to the other parties and the other

parties have to copy this bit to their state. In particular, this

means that the labels output by the tth garbled circuit in

every other protocol component Φ̃j for j 	= i must reflect

this communicated bit. The main technical challenge we

solve is in designing a non-interactive method to realize this

communication and also ensure at the same time that Pi

computes each NAND gate correctly. This is done using

homomorphic proof commitment with encryption. Let us

start with a method to realize the communication.

Recall that by our assumption on Φ, the updated state of

every party can only be one of two choices. This choice is

determined by the output of the NAND computation done

by the active party. Let the NAND computation done in

round t take as input the bits in positions f and g of the

local state of party Pi. For simplicity, let us assume that f ,

g correspond to indices where the input of Pi is written.

Let d be a commitment to 0 using some fixed randomness

(known to all parties) and let d be a commitment to 1 (again

using some fixed randomness). Applying the GOS trick, we

591

deduce that if the output of the NAND computation is 0 then

e0 = ci,f · ci,g · d2 · com(−2; 0) is a commitment to {0, 1};
else e1 = ci,f · ci,g · d2 · com(−2; 0) is a commitment to

{0, 1}. Now, we let every other garbled protocol component

Φ̃j for j 	= i output two zero-one encryptions: one under the

commitment e0 containing the set of labels of the updated

state assuming that the communicated bit is 0; and the other

under the commitment e1 assuming that the communicated

bit is 1. The active party outputs a zero-one proof that either

e0 or e1 is a commitment to a message in {0, 1}. Using

this proof, every party can recover the correct set of labels

corresponding to the updated state.

Note that the above described solution reveals the output

of the NAND gate in the clear to the other parties. This

is necessary for the case where the bit is communicated to

other parties but is undesirable if the NAND is an internal

computation as it might reveal some information about the

secret state of party Pi. On the contrary, every other party

must somehow ensure that Pi computes this NAND gate

correctly. We solve this problem by augmenting the input

encoding with a commitment to a string of random bits

i.e., the input encoding will be a homomorphic commitment

to every bit of xi‖ri where ri is a random string. To

prove that an internal NAND computation is done correctly,

the active party Pi generates a zero-one proof that either

e0 = ci,f ·ci,g ·d2·com(−2; 0) or e1 = ci,f ·ci,g ·d·com(−2; 0)
is a commitment to {0, 1} where d is now a commitment

to a random bit generated as a part of the input encoding. d
denotes the commitment to the flipped bit. Now, a proof that

either e0 or e1 contains a commitment to {0, 1} reveals the

output of the NAND computation masked with the random

bit committed in d and hence completely hides the output.

Note that the homomorphic property of the commitment

scheme enables every party to efficiently generate d. A

downside of this approach is that the size of the input

encoding grows with the round complexity of Φ. But using

techniques from the recent work of Cho et al. [17], we can

make the size of the input encoding succinct i.e., grow only

with the size of the input. We won’t delve into the details.

D. Black-Box Two-Round MPC

Instantiating the above garbled protocols construction

with a semi-honest secure Φ, we obtain a two-round multi-

party computation protocol based on bilinear maps.10 How-

ever, the protocol makes non-black box use of the underlying

homomorphic proof commitment with encryption as well

as cryptographic operations that Φ might invoke. In this

subsection, we explain how to obtain a two-round MPC

10For technical reasons, we need the protocol Φ to be semi-malicious
[5]. The semi-malicious security is a generalization of semi-honest security
where the adversary is still restricted to follow the protocol but can choose
its random coins arbitrarily. Note that the protocol described in [30] is
semi-maliciously secure.

protocol by making black-box use of a homomorphic proof

commitment with encryption as well as a DDH hard group.

Designing a protocol that makes black-box use of a

homomorphic proof commitment with encryption is some-

what straightforward. We observe that the proofs and the

ciphertexts computed within the garbled circuit can in fact

be precomputed and hardwired in its description. Later, the

garbled circuit chooses the appropriate pre-computed values

based on its inputs. We note that this pre-computation is

possible because the output of each garbled circuit depends

only on a constant number of bits in its input.

We now explain how to obtain a protocol that makes

black-box use of cryptographic operations invoked by Φ.

Suppose Φ was an information theoretic secure MPC

then the compiled protocol already makes black-box use

of the underlying cryptographic primitives. But information

theoretic secure MPC protocols can exist only if a majority

of the parties are honest [11] and secure channels are present

between every pair of parties. However, the situation in the

OT hybrid model is different. There exist constructions of

information theoretic protocols tolerating dishonest majority

and malicious behavior [44], [41] in the OT hybrid model.

We will be using such a protocol to design our black-box

two round MPC.

Let Φ be an information theoretic secure protocol in the

OT hybrid model tolerating malicious behavior. At a high

level, our black-box two round MPC protocol generates OT

correlations 11 in the first round and later hardwires these

correlations in the garbled circuits to enable Φ perform infor-

mation theoretic OTs. We now explain how to generate such

OT correlations building on the non-interactive oblivious

transfer by Bellare and Micali [10].

Let us first recall the OT protocol of Bellare and Micali

in the common random string model. The crs consists of

a random group element X . The sender samples a random

exponent a and computes A := ga and sends it over to

the receiver. The receiver samples a random exponent b and

computes B := gb. It then samples a random bit c and

computes C0 := (1−c)B+c(XB) and C1 := cB+(1−c)(XB)
and sends them over to A. Notice that by construction of

C0 and C1, B knows the discrete log of Cc. The sender on

receiving C0 and C1 sets the two random strings (s0, s1)
to be (Ca

0 , C
a
1) and the receiver sets (c, sc) to be (c, Ab).

Note that assuming the DDH assumption, the other string

s1−c is indistinguishable to a randomly distributed string.

Building on this protocol and additionally using Groth-Sahai

[38] proofs to obtain malicious security, we obtain a two

round MPC protocol making black-box use a homomorphic

proof commitment with encryption and a DDH hard group.

11Recall that OT correlations consists of a random pair of strings (s0, s1)
provided to the sender and a pair (c, sc) where c is a random bit provided
to the receiver.

592

III. ORGANIZATION

In Section IV we formally define homomorphic proof

commitment with encryption and give a construction based

on sub-group decision assumption. The construction from

decision linear assumption appears in the full version. In

Section V, we give the definition of garbling scheme for

protocols and in Section V-B we give a construction based

on any homomorphic proof commitment with encryption.

The results on extending garbled protocols to two-round UC

secure MPC and two-round MPC making black-box use of

the underlying group appears in the full version.

IV. HOMOMORPHIC PROOF COMMITMENTS WITH

ENCRYPTION

In this section we provide definitions of homomorphic

proof commitments with encryption – namely, a homo-

morphic proof commitment scheme with some additional

encryption and decryption functionality. We then give con-

structions of this primitive based on the sub-group decision.

The construction from decision linear assumption appears in

the full version.

We recall the definition of homomorphic proof commit-

ments from Groth et al. [37] for realizing non-interactive

zero-knowledge proofs. Much of the description below has

been taken verbatim from Groth et al. [37]. We keep the

notation identical to Groth et al. [37, Section 3] for the sake

of a reader familiar with Groth et al. [37].

A homomorphic proof commitment scheme is a non-

interactive commitment scheme with some special properties

that we define below. Recall first that in a non-interactive

commitment scheme there is a key generator, which gen-

erates a public commitment key ck. The commitment key

ck defines a message space Mck, a randomizer space Rck

and a commitment space Cck. We will require that the key

generation algorithm is probabilistic polynomial time and

outputs keys of length θ(λ). It will in general be obvious

which key we are using, so we will sometimes omit it in our

notation. There is an efficient commitment algorithm com
that takes as input the commitment key, a message and a

randomizer and outputs a commitment, c = com(m; r). We

call (m, r) an opening of c.
The commitment scheme must be binding and hiding.

Binding means that it is infeasible to find two openings

with different messages of the same commitment. Hiding

means that given a commitment it is infeasible to guess

which message is inside the commitment. We want a com-

mitment scheme that has two different flavors of keys.

The commitment key can be perfectly binding, in which

12We have been a little imprecise in this overview. In order to use
Groth-Sahai proofs we cannot rely on DDH assumption as GS proofs
assume the existence of an efficiently computable bilinear map. In the actual
construction we assume CDH is hard.

case a valid commitment uniquely defines one possible

message. Alternatively, the commitment key can be perfectly

hiding, in which case the commitment reveals no information

whatsoever about the message. We require that these two

kinds of keys are computationally indistinguishable.

We will consider commitments, where both the message

space (M,+, 0), the randomizer space (R,+, 0) and the

commitment space (C, ·, 1) are finite abelian groups. The

commitment scheme should be homomorphic, i.e., for all

messages and randomizers we have

com(m1 +m2; r1 + r2) = com(m1; r1)com(m2; r2).

We will require that the message space has a generator

1, and also that it has at least order 4. The property that

sets homomorphic proof commitments apart from other

homomorphic commitments, is that there is a way to prove

that a commitment contains a message belonging {0, 1}.
More precisely, if the key is of the perfect binding type,

then it is possible to prove that there exists an opening

(m, r) ∈ {0, 1} × R. On the other hand, if it is a per-

fect hiding key, then the proof will be perfectly witness-

indistinguishable, i.e., it is impossible to tell whether the

message is 0 or 1.

In the sections that follow, we will use

(Kbinding,Khiding, com, P01, V01) to denote a homomorphic

proof commitment scheme. We refer the readers to [37] for

the formal definition.

A. The Definition

(Kbinding,Khiding, com, P01, V01, E01, D01) is a

homomorphic proof commitments with encryption if

(Kbinding,Khiding, com,Topen, P01, V01) is homomorphic

proof commitment and E01, D01 are PPT algorithms such

that E01 on input a commitment key ck, a commitment

c = com(ck,m; r) and a message msg outputs a ciphertext

ct and D01 given ck, the commitment c, the ciphertext

ct and a proof π such that V01(ck, c, π) = 1 outputs the

encrypted message msg. In other words, given a proof π
such that c is a commitment to a message in {0, 1}, we

can decrypt the ciphertext ct. Formally, we require that

E01 and D01 satisfy the following correctness and security

properties.

• Perfect Correctness. For any ck (in the support of

Kbinding,Khiding), m ∈ {0, 1}, randomness r, and

proof π generated by P01(ck,m, r) and message msg,

Pr
[
ct← E01(ck, com(ck,m; r),msg) ∧D01(ck, ct, π) = msg

]
= 1

• Statistical Semantic-Security. For all (possibly un-

bounded) adversaries A = (A1,A2),

Pr
[
(ck, ·)← Kbinding(1

λ); (c,msg0,msg1, st)← A1(ck);

b← {0, 1}; ct← E01(ck, c,msgb) : A2(ck, ct, st) = b ∧
∃ m 	∈ {0, 1}, r ∈ R s.t. c = com(ck,m; r)

]
≤ 1

2
+ negl(λ)

593

Perfectly binding key generation Kbinding(1
k):

1) (p, q,G,GT , e, g)← GBGN(1
k). Let n = pq.

2) Sample x← Z
∗
q and compute h = gpx.

3) Let ck = (n,G,GT , e, g, h).
4) Let xk = (ck, q).
5) Return (ck, xk).

Perfectly hiding key generation Kbinding(1
k):

1) (p, q,G,GT , e, g)← GBGN(1
k). Let n = pq.

2) x← Z
∗
n and compute h = gx.

3) Let ck = (n,G,GT , e, g, h).
4) Let tk = (ck, x)
5) Return (ck, tk)

Commitment comck(m):
The key ck defines message space Zp, randomizer
space Zn and commitment space G. To commit to
message m ∈ Zp do

1) r ← Zn

2) Return comck(m; r) = gmhr

WI proof P01(ck,m, r):
Given (m, r) ∈ {0, 1}×Zn we make the WI proof
for commitment to 0 or 1 as π = (g2m−1hr)r .

Verification V01(ck, c, π):
To verify a WI proof π of commitment c containing
0 or 1, check e(c, cg−1) = e(h, π).

Figure 1. Homomorphic Proof Commitment from sub-group decision
taken verbatim from [37]

We say that scheme has computational semantic-

security if the above requirement holds only against

PPT A.

B. Construction from Sub-group Decision Assumption

In this subsection we give a construction of homomor-

phic proof commitment with encryption from the sub-group

decision assumption.

At a high level, our construction

(Kbinding,Khiding, com, P01, V01, E01, D01) is

obtained by supplementing the homomorphic proof

commitment scheme of Groth et al. [37], namely

(Kbinding,Khiding, com, P01, V01) (given in Figure 1)

with encryption E01 and decryption D01 operations (given

in Figure 2). The supplemental encryption/decryption

algorithms make use of a (log p, negl(λ))-strong randomness

extractor RandExt : G× {0, 1}∗ → {0, 1} log p
2 .

We now show correctness and security of the above

construction.

Lemma 4.1: Assuming the subgroup decision assump-

tion, the construction described in Figures 1 and 2 is a

homomorphic proof commitment with encryption.

Proof: We note that (Kbinding,Khiding, com,
P01, V01,Ext) is a homomorphic proof commitment scheme

as argued by Groth et al. [37]. We now prove that (E01, D01)
satisfy perfect correctness and statistical semantic-security.

Encrypt E01(ck, c,msg):

To encrypt msg ∈ {0, 1} log p
2 ,

1) Choose s← Zn.
2) Choose v ← {0, 1}∗ as the seed of RandExt.
3) Output (v, hs,RandExt(v, e(cs, cg−1)) ⊕

msg).

Decrypt D01(ck, c, π, ct):

1) Parse ct as (v, ct1, ct2).
2) Output RandExt(v, e(ct1, π))⊕ ct2.

Figure 2. Supplemental Encryption and Decryption.

Perfect Correctness. Let c = com(ck,m; r) where m ∈
{0, 1}. Let ct = (v, hs,RandExt(v, e(cs, cg−1))⊕msg) and

π = (g2m−1hr)r. To prove correctness it is sufficient to

show that e(hs, π) = e(cs, cg−1).

e(cs, cg−1) = e(gmhr, gm−1hr)s

= e(g, g)sm(m−1)e(h, g)sr(m−1)e(g, h)smre(h, h)sr
2

= e(h, g)sr(m−1)e(g, h)smre(h, h)sr
2

= e(h, g)sr(2m−1)e(h, h)sr
2

= e(hs, (g2m−1hr)r)

= e(hs, π)

Statistical Semantic Security. We first prove the follow-

ing claim.

Claim 4.2: Let (ck, ·)← Kbinding(1
λ). Let S denote the

random variable uniformly distributed in Zn. Then

H∞(e(g, g)S |(ck, hS)) ≥ log p

Proof: Let q1 ≡ q−1 mod p and p1 = p−1 mod q. By

Chinese remainder theorem, any s ∈ Zn can be expressed as

sqpp1+spqq1 where sp ≡ s mod p and sq ≡ s mod q. As

(ck, ·)← Kbinding(1
λ), therefore we have that h = gpx for

some x ∈ Z
∗
q . Thus, for any s ∈ Zn, hs = gx(sqp

2p1) mod n.

Let S be uniformly distributed in Zn. By Chinese re-

mainder theorem, Sp ≡ S mod p and Sq ≡ S mod q
are uniform and independent random variables in Zp and

Zq respectively. Also, hS = gxSqp
2p1 mod n. Therefore,

conditioned on fixing hS (which fixes Sq) and ck, gS is

still uniformly distributed over a set of size p since Sp is

randomly distributed in Zp. Thus, H∞(e(g, g)S |(ck, hS)) ≥
log p.

Consider a commitment c = com(m; r) such that m 	∈
{0, 1}. Let S be a random variable uniformly distributed in

Zn. Then, we have that

e(cS , cg−1) = e(g, g)Sm(m−1)e(hS , g)r(m−1)e(g, hS)mre(h, hS)r
2

Since m 	∈ {0, 1}, conditioned on fixing (hS , ck), we

infer from Claim 4.2 that H∞(e(cS , cg−1)) ≥ log p. Now,

594

relying on the fact that the output of randomness extractor is

statistically close to uniform we conclude statistical semantic

security for the scheme.

V. GARBLING PROTOCOLS

In this section we give the definition of garbling scheme

for protocols and give an instantiation based on a homomor-

phic proof commitment with encryption.

A. Definition
Let Φ be a n-party protocol.13 Let xi be the input of

party i and let Φi be the next-message function for party i.
We define the transcript of Φ to be the set of all messages

exchanged between parties. The transcript is denoted by

Φ(x1, . . . , xn) when Φ is run with inputs x1, . . . , xn. The

transcript is also assumed to be the output of the protocol.
Definition 5.1: A Garbling scheme for protocols is a

tuple of algorithms (Setup,Garble,Eval) with the following

syntax, correctness and security properties.

• Setup(1λ) : It is a PPT algorithm that takes as input

the security parameter (encoded in unary) and outputs

a reference string σ.

• Garble(σ, i,Φi, xi) : It is a PPT algorithm that takes as

input a reference string σ, the index i of a party, the

next message function Φi and the input xi and outputs

– A garbled protocol component Φ̃i of the next

message function Φi.

– An encoding x̃i (of length �e) of the input xi.

– A set of encoding labels {labij,0, labij,1}j∈[n·�e] for

the input encodings of all parties.

• Eval({Φ̃i}, {x̃i}, {labix1‖...‖xn
}) : It is a deterministic

algorithm that takes as input the set of garbled protocol

components {Φ̃i}, a set of input encodings {x̃i} and

the encoding labels {labix̃1‖...‖x̃n
} corresponding to the

input encodings x̃1‖ . . . ‖x̃n and outputs a string y or

the symbol ⊥.

• Correctness: For every protocol Φ and every set of

inputs {xi},
Pr

[
σ ← Setup(1λ); (Φ̃i, x̃i, {labij,0, labij,1})←

Garble(σ, i,Φi, xi) ∀ i ∈ [n] : Φ(x1, . . . , xn) =

Eval({Φ̃i}, {x̃i}, {labix̃1‖...‖x̃n
})
]
= 1

• Semi-Honest Security: There exists a PPT algorithm

Sim such that for every protocol Φ, every subset

H ⊆ [n] of honest parties and every choice of inputs

{xi}i∈[n] of the parties we have that:{
σ, {Φ̃i, x̃i, lab

i
x̃1‖...‖x̃n

}i∈[n]
}

c≈{
Sim(1λ,Φ, H, {xi}i �∈H ,Φ(x1, . . . , xn))

}
13For simplicity, we assume that Φ is deterministic. For the case where

Φ is randomized, we extend the input string of each party to include its
random coins so that Φ is a deterministic protocol in the inputs of the
parties.

where σ ← Setup(1λ) and for each i ∈ [n] we have

that (Φ̃i, x̃i, {labij,0, labij,1})← Garble(σ, i,Φi, xi).

B. Construction

In this subsection we give a construction of a garbling

scheme for protocols from a homomorphic proof com-

mitment with encryption and a garbling scheme for cir-

cuits (which is implied by the existence of a commitment

scheme). The main theorem that we prove in this section is:

Theorem 5.2: Assuming the existence of a homomorphic

proof commitment with encryption there exists a construc-

tion of garbling scheme for protocols satisfying Defini-

tion 5.1.

Before describing the construction, we give some notation

to describe the n-party protocol Φ and make additional

assumptions on the structure of Φ. These assumptions can

be made without loss of generality.

Notation for Φ. Recall that xi denotes the input of party

i and Φi denotes its next message function. We assume that

the length of the input of each party is m. Let T be the

round complexity of Φ.

Structure of Φ. We assume that each party Pi maintains

a local state that is updated at the end of every round. The

local state is a function of the input, the random tape and

the set of messages received from other parties.

At the beginning of the tth round, every party Pi runs

the program Φi on input t to obtain an output (i∗, f, g). 14

Here, i∗ denotes the active party in round t. The active party

Pi∗ computes one NAND gate on a pair of bits of its state

and writes the computed bit to its state. The inputs to the

NAND gate are given by the bits in the indices f and g of

the local state of Pi∗ . Additionally, for a (pre-determined)

subset of rounds Bi∗ ⊆ {t ∈ [T] : (i∗, ·, ·) = Φi(t)}, Pi∗

outputs the computed bit to other parties. In this case, all the

parties copy this bit to their state. For the rest of the rounds

where Pi∗ is active, it outputs the computed bit masked with

a random bit. In those rounds, every other party ignores this

message.

To describe this structure more formally, let B := ∪iBi.

Let the initial state of the party Pi be ri‖(xi, si) where

xi ∈ {0, 1}m is the input, si ∈ {0, 1}s be the random tape

used in the computation of Φ and ri ∈ {0, 1}T are the

masking bits. We will let ri have the form

ri,k :=

{
0 if k ∈ [T] ∩B

uniform in {0, 1} if k ∈ [T] \B

We consider ri‖(xi, si) as the actual input of party Pi.

For every i ∈ [n], let yi be the state of party Pi before

the beginning of round t. Let (i∗, f, g) := Φi(t). The parties

compute their updated state y′i at the end of round t as

14We assume that Φ1(t) = Φ2(t) = . . . = Φn(t) for every t ∈ [T].

595

y′i∗,k :=

{
yi∗,k k 	= t

NAND(yi∗,f , yi∗,g) k = t

for i 	= i∗ y′i :=

{
yi t 	∈ Bi∗ ∨ NAND(yi∗,f , yi∗,g) = 0

yi ⊕ et t ∈ Bi∗ ∧ NAND(yi∗,f , yi∗,g) = 1

where ek is the k-th unit vector. Finally, we let � = T+m+r
to denote the length of the local state of every party.

Remark 5.3: We observe that any protocol Φ can be re-

written to follow the above format at an additional cost of

increasing the round complexity by a polynomial (in the

computational complexity of Φ) factor.

Construction. We make use of the following fact from

[37].

Fact 5.4 ([37]): Let M be the message space of a ho-

momorphic proof commitment with encryption. Further, M
is a finite cyclic group with neutral element 0 and generator

1. Let b0, b1, b2 ∈ {0, 1}. If the order of the group is at least

4, then b2 = ¬(b0 ∧ b1) if and only if b0 + b1 +
2b2 − 2 ∈ {0, 1}

We give the formal description of our construction below.

The construction uses a homomorphic proof commitment

with encryption (Kbinding,Khiding, P01, V01, E01, D01) and

a garbling scheme for circuits (GarbleCkt,EvalCkt).

• Setup(1λ):
1) Sample (ck, ·) ← Kbinding(1

λ) and output σ :=
ck as the reference string.

• Garble(σ, i,Φi, xi):
1) Compute (x̃i, yi, ski) ← Encode(σ, i, xi) where

the function Encode is described below.

2) Set labeli,T+1 :=
(
(0, 0), . . . , (0, 0)

)
where (0, 0)

is repeated �+ n�e + n� times and �e := |x̃i|.
3) for each t from T down to 1,(

P̃i,t, labeli,t
)← GarbleCkt(1λ,PΦ[i, t, ski,

ck, labeli,t+1]) where PΦ is described below.

4) Parse labeli,1 as {stik,0, stik,1}k∈[�],
{enik,0, enik,1}k∈[n�e], {trik,0, trik,1}k∈[n�].

5) Set sti := {stik,yi,k
}k∈[�] and tri := {trik,0}k∈[n�].

6) Set the garbled protocol component Φ̃i :=({P̃i,t}t∈[T], st
i, tri

)
, the input encoding to x̃i and

the encoding labels to be {enik,0, enik,1}k∈[n�e].
• Eval({Φ̃i}, {xi}, {enix̃1‖...‖x̃n

}):
1) For every i ∈ [n], parse x̃i as {ci,k}k∈[�]. For

every k ∈ B, check if ci,k := com(ck, 0; 0λ). If

not, output ⊥.

2) Parse Φ̃i as
({P̃i,t}t∈[T], st

i, tri
)
.

3) Set ˜labeli := (
sti, enix̃1‖...‖x̃n

, tri
)

and the initial

tracking strings ui := 0� for every i ∈ [n].
4) for every round t from 1 to T − 1 do:

a) Let (i∗, f, g) := Φ1(t).

b) Compute
(
label

i∗
, β, πi∗,t

)← EvalCkt(P̃i∗,t,˜labeli∗) and label
i ← EvalCkt(P̃i,t, ˜labeli) for

every i 	= i∗.
c) for every i ∈ [n] do,

i) Parse label
i

as (st
i
, eni, tr

i
).

ii) Compute df , dg, e0, e1 exactly as in PΦ

using the tracking string ui∗ .

iii) Parse st
i

as
({ŝtik}k �=t, stct

i
0, stct

i
1

)
and

compute ŝt
i
t := D01(ck, eβ , stct

i
β , πi∗,t).

Update sti := {ŝtik}k∈[�].
iv) Parse tr

i
as{

{t̂ri(j−1)�+k}k∈[�]\{t}, trctij,0, trctij,1
}
j∈[n]

.

For every j ∈ [n], compute

t̂r
i
(j−1)�+t := D01(ck, eβ , trct

i
j,β , πi∗,t).

Update tri := {t̂rik}k∈[n�].
v) Update ˜labeli := (

sti, enix̃1‖...‖x̃n
, tri

)
.

vi) Update ui∗,t to β. If t ∈ Bi∗ , update every

uj,t to β for all j ∈ [n].

5) Compute y := EvalCkt(P̃i,T , ˜labeli) and output y.

• Encode(σ, i, xi):
1) Choose si ← {0, 1}s as the random tape of party

Pi in the protocol Φ.

2) Let B := ∪iBi. Choose randomness {ωi,k}k∈[�]
and the initial state yi := ri‖(xi, si) (with length

�) as:

ri,k :=

{
0 if k ∈ [T] ∩B

uniform in {0, 1} if k ∈ [T] \B

ωi,k :=

{
0λ if k ∈ B

uniform in {0, 1}λ otherwise

3) For each k ∈ [�], compute ci,k :=
com(ck, yi,k;ωi,k).

4) Output x̃i := {ci,k}k∈[�], the initial state yi and

the secret randomness ski := {ωi,k}k∈[�].
• PΦ[i, t, ski, {cki}, label]:

Input. The state yi of party Pi, the set of encodings

{x̃j} and the set of tracking strings {uj}
Hardcoded. The index i of the party, the

round number t, the secret randomness ski, the

commitment key ck and a set of labels label :={{stk,0, stk,1}k∈[�], {enk,0, enk,1}k∈[n�enc], {trk,0, trk,1}k∈[n�]
}

.

1) Let (i∗, f, g) := Φi(t).
2) Parse x̃i∗ as {ci∗,k}k∈[�].
3) Let df and dg be the commitments to the bits

yi∗,f and yi∗,g where yi∗ is the current state of the

active party. These commitments are computed as

follows: for h ∈ {f, g}, dh := ci∗,h if ui∗,h = 0;

else, dh := com(ck,1;0λ)
ci∗,h

.

596

4) Compute e0 := dfdgc
2
i∗,tcom(ck,−2; 0λ) and

e1 := dfdg

(
com(ck,1;0λ)

ci∗,t

)2

com(ck,−2; 0λ).
Set α := NAND(yi,f , yi,g).

5) For b ∈ {0, 1}, compute stctb :=⎧⎪⎨⎪⎩
E01(ck, eb, stt,b) if t ∈ Bi∗

E01(ck, eb, stt,yi,t
) if t 	∈ Bi∗ ∧ i 	= i∗

E01(ck, eb, stt,α) if t 	∈ Bi∗ ∧ i = i∗
.

Set st := {stk,yi,k
}k �=t, stct0, stct1.

6) Set en := {enk,zk}k∈[|z|] where z = x̃1‖ . . . ‖x̃n.

7) For b ∈ {0, 1} and j ∈ [n], compute trctj,b :={
E01(ck, eb, tr(j−1)�+t,b) if (t ∈ Bi∗) ∨ (j = i∗

)
E01(ck, eb, tr(j−1)�+t,uj,t

) otherwise .
Set tr :=

{{tr(j−1)�+k,uj,k
}k∈[�]\{t}, trctj,0, trctj,1

}
j∈[n].

8) If i = i∗ then parse ski as {ωi,k}k∈[�]. For

h ∈ {f, g}, set ω′i,h :=

{
ωi,h if ui,h = 0

−ωi,h otherwise

Compute πi,t := P01(ck, eβ , ρβ) where β :=
yi,t ⊕ α, ρ0 = ω′i,f + ω′i,g + 2ωi,t, ρ1 = ω′i,f +
ω′i,g − 2ωi,t.

9) If t 	= T then output label := (st, en, tr) and

additionally output (β, πi,t) if i = i∗.
If t = T then output the transcript of the protocol

from the state {yi,k}k∈B .

Correctness. To argue correctness, it is sufficient to

show that the local state of each party is updated correctly at

the end of every round number t. We show this by induction

on the number of rounds. The base case is clear. Let us

assume that the hypothesis is true for the first t rounds. Let

yi be the local state of party Pi at the end of round t. Let

(i∗, f, g) := Φ1(t+ 1). We consider two cases:

• Case-1: t + 1 	∈ Bi∗ . In this case, the local state

of parties i 	= i∗ does not change i.e., y′i = yi.
The local state of party Pi∗ is updated as y′i∗,t+1 :=
NAND(yi∗,f , yi∗,g) and y′i∗,k = yi∗,k for k 	= t + 1.

Notice that for the case where t + 1 	∈ Bi∗ , pro-

gram PΦ outputs the labels corresponding to the string

{y′i,k}k �=t+1 in the clear and outputs two zero-one

encryptions of the same label corresponding to y′i,t+1

under the commitments e0 and e1 respectively. Thus,

decrypting stctiβ using the proof πi∗,t+1 yields the

label corresponding to y′i,t+1 for every i ∈ [n]. Thus,

the updated states of every party is correct as per the

computation of Φ.

• Case-2: t + 1 ∈ Bi∗ . In this case, y′i,t+1 =
NAND(yi∗,f , yi∗,g) and y′i∗,k = yi∗,k for k 	= t+1 for

every party i ∈ [n]. The program PΦ outputs the labels

corresponding to the string {y′i,k}k �=t+1 in the clear and

outputs a zero-one encryption of the label y′i,t+1 under

the commitment ey′
i,t+1

for every i ∈ [n]. Notice that by

our construction yi,t+1 = 0 and thus β := y′i,t+1. Thus,

decrypting stctiβ using the proof πi∗,t+1 yields the label

corresponding to y′i,t+1 for every i ∈ [n]. Thus, even

in this case the updated state of every party is correct

as per the computation of Φ.

Security The security of the above construction is

argued in the full version of the paper.

ACKNOWLEDGMENT

Research supported in part from 2017 AFOSR

YIP Award, DARPA/ARL SAFEWARE Award

W911NF15C0210, AFOSR Award FA9550-15-1-0274,

NSF CRII Award 1464397, and research grants by the

Okawa Foundation, Visa Inc., and Center for Long-Term

Cybersecurity (CLTC, UC Berkeley). The views expressed

are those of the author and do not reflect the official policy

or position of the funding agencies.

REFERENCES

[1] Martı́n Abadi and Joan Feigenbaum. Secure circuit evalua-
tion. Journal of Cryptology, 2(1):1–12, 1990.

[2] William Aiello, Yuval Ishai, and Omer Reingold. Priced
oblivious transfer: How to sell digital goods. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 119–135. Springer, Heidelberg, May 2001.

[3] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryp-
tography in NC0. In 45th FOCS, pages 166–175. IEEE
Computer Society Press, October 2004.

[4] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How
to garble arithmetic circuits. In Rafail Ostrovsky, editor,
52nd FOCS, pages 120–129. IEEE Computer Society Press,
October 2011.

[5] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran
Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Multi-
party computation with low communication, computation and
interaction via threshold FHE. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

[6] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven
Rudich, Amit Sahai, Salil P. Vadhan, and Ke Yang. On the
(im)possibility of obfuscating programs. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Heidelberg, August 2001.

[7] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
round complexity of secure protocols (extended abstract). In
22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[8] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and
Phillip Rogaway. Efficient garbling from a fixed-key block-
cipher. In 2013 IEEE Symposium on Security and Privacy,
pages 478–492. IEEE Computer Society Press, May 2013.

[9] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foun-
dations of garbled circuits. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM
Press, October 2012.

597

[10] Mihir Bellare and Silvio Micali. Non-interactive oblivi-
ous transfer and spplications. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 547–557. Springer,
Heidelberg, August 1990.

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson.
Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In 20th ACM
STOC, pages 1–10. ACM Press, May 1988.

[12] Dan Boneh and Matthew K. Franklin. Identity-based en-
cryption from the Weil pairing. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 213–229.
Springer, Heidelberg, August 2001.

[13] Elette Boyle, Niv Gilboa, and Yuval Ishai. Break-
ing the circuit size barrier for secure computation under
DDH. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–
539. Springer, Heidelberg, August 2016.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based
secure computation: Optimizing rounds, communication, and
computation. In EUROCRYPT 2017, LNCS. Springer, Hei-
delberg, 2017. (to appear).

[15] Zvika Brakerski and Renen Perlman. Lattice-based fully
dynamic multi-key FHE with short ciphertexts. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I,
volume 9814 of LNCS, pages 190–213. Springer, Heidelberg,
August 2016.

[16] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd FOCS, pages
136–145. IEEE Computer Society Press, October 2001.

[17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta,
Peihan Miao, and Antigoni Polychroniadou. Laconic receiver
oblivious transfer and applications. Manuscript, 2017.

[18] Michael Clear and Ciaran McGoldrick. Multi-identity and
multi-key leveled FHE from learning with errors. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 630–656. Springer,
Heidelberg, August 2015.

[19] Stephen A. Cook and Robert A. Reckhow. Time bounded
random access machines. J. Comput. Syst. Sci., 7(4):354–
375, 1973.

[20] Whitfield Diffie and Martin E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[21] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for
secure computation (extended abstract). In 26th ACM STOC,
pages 554–563. ACM Press, May 1994.

[22] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana
Raykova. Two-round secure MPC from indistinguishability
obfuscation. In Yehuda Lindell, editor, TCC 2014, volume
8349 of LNCS, pages 74–94. Springer, Heidelberg, February
2014.

[23] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova,
Amit Sahai, and Brent Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, October
2013.

[24] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters.
Witness encryption and its applications. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 467–476. ACM Press, June 2013.

[25] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant
Pandey. Secure multiparty RAM computation in constant
rounds. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 491–520.
Springer, Heidelberg, October / November 2016.

[26] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box
garbled RAM. In Venkatesan Guruswami, editor, 56th FOCS,
pages 210–229. IEEE Computer Society Press, October 2015.

[27] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra
Scafuro. Garbled RAM from one-way functions. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC,
pages 449–458. ACM Press, June 2015.

[28] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mar-
iana Raykova, and Daniel Wichs. Garbled RAM revisited.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EU-
ROCRYPT 2014, volume 8441 of LNCS, pages 405–422.
Springer, Heidelberg, May 2014.

[29] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-Hop
homomorphic encryption and rerandomizable Yao circuits. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 155–172. Springer, Heidelberg, August 2010.

[30] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game or A completeness theorem for
protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[31] Oded Goldreich and Rafail Ostrovsky. Software protection
and simulation on oblivious rams. J. ACM, 43(3):431–473,
1996.

[32] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
One-time programs. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 39–56. Springer, Heidelberg,
August 2008.

[33] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fer-
nando Krell, Tal Malkin, Mariana Raykova, and Yevgeniy
Vahlis. Secure two-party computation in sublinear (amortized)
time. In Ting Yu, George Danezis, and Virgil D. Gligor,
editors, ACM CCS 12, pages 513–524. ACM Press, October
2012.

[34] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-
round MPC with fairness and guarantee of output delivery.
In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–
82. Springer, Heidelberg, August 2015.

598

[35] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable
obfuscation. Cryptology ePrint Archive, Report 2017/274,
2017. http://eprint.iacr.org/2017/274.

[36] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-
interactive zero knowledge for np. In Proceedings of Euro-
crypt 2006, volume 4004 of LNCS, pages 339–358. Springer,
2006.

[37] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New
techniques for noninteractive zero-knowledge. J. ACM,
59(3):11:1–11:35, 2012.

[38] Jens Groth and Amit Sahai. Efficient noninteractive proof
systems for bilinear groups. SIAM J. Comput., 41(5):1193–
1232, 2012.

[39] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas.
Fast garbling of circuits under standard assumptions. In
Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors,
ACM CCS 15, pages 567–578. ACM Press, October 2015.

[40] Shai Halevi and Yael Tauman Kalai. Smooth projective
hashing and two-message oblivious transfer. Journal of
Cryptology, 25(1):158–193, January 2012.

[41] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding
cryptography on oblivious transfer - efficiently. In David
Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
572–591. Springer, Heidelberg, August 2008.

[42] Antoine Joux. A one round protocol for tripartite Diffie-
Hellman. Journal of Cryptology, 17(4):263–276, September
2004.

[43] Jonathan Katz and Rafail Ostrovsky. Round-optimal se-
cure two-party computation. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 335–354.
Springer, Heidelberg, August 2004.

[44] Joe Kilian. Founding cryptography on oblivious transfer. In
20th ACM STOC, pages 20–31. ACM Press, May 1988.

[45] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek.
FleXOR: Flexible garbling for XOR gates that beats free-
XOR. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 440–
457. Springer, Heidelberg, August 2014.

[46] Vladimir Kolesnikov and Thomas Schneider. Improved
garbled circuit: Free XOR gates and applications. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, ed-
itors, ICALP 2008, Part II, volume 5126 of LNCS, pages
486–498. Springer, Heidelberg, July 2008.

[47] Yehuda Lindell and Benny Pinkas. A proof of security
of Yao’s protocol for two-party computation. Journal of
Cryptology, 22(2):161–188, April 2009.

[48] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan.
On-the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption. In Howard J. Karloff and
Toniann Pitassi, editors, 44th ACM STOC, pages 1219–1234.
ACM Press, May 2012.

[49] Steve Lu and Rafail Ostrovsky. How to garble RAM pro-
grams. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 719–734.
Springer, Heidelberg, May 2013.

[50] Pratyay Mukherjee and Daniel Wichs. Two round multiparty
computation via multi-key FHE. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 735–763. Springer, Heidelberg, May
2016.

[51] Moni Naor and Benny Pinkas. Efficient oblivious transfer
protocols. In S. Rao Kosaraju, editor, 12th SODA, pages 448–
457. ACM-SIAM, January 2001.

[52] Rafail Ostrovsky. Efficient computation on oblivious RAMs.
In 22nd ACM STOC, pages 514–523. ACM Press, May 1990.

[53] Rafail Ostrovsky and Victor Shoup. Private information
storage (extended abstract). In 29th ACM STOC, pages 294–
303. ACM Press, May 1997.

[54] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE,
revisited. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part II, volume 9986 of LNCS, pages 217–238.
Springer, Heidelberg, October / November 2016.

[55] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and
Stephen C. Williams. Secure two-party computation is
practical. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 250–267. Springer, Heidelberg,
December 2009.

[56] Nicholas Pippenger and Michael J. Fischer. Relations among
complexity measures. J. ACM, 26(2):361–381, 1979.

[57] Michael O. Rabin. How to exchange secrets with oblivious
transfer, 1981.

[58] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Harold N. Gabow and Ronald
Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005.

[59] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-
and-compare programs under lwe. Cryptology ePrint Archive,
Report 2017/276, 2017. http://eprint.iacr.org/2017/276.

[60] Andrew Chi-Chih Yao. How to generate and exchange secrets
(extended abstract). In 27th FOCS, pages 162–167. IEEE
Computer Society Press, October 1986.

[61] Samee Zahur, Mike Rosulek, and David Evans. Two halves
make a whole - reducing data transfer in garbled circuits using
half gates. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
220–250. Springer, Heidelberg, April 2015.

599

