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Abstract—Non-malleable commitments are a fundamen-
tal cryptographic tool for preventing against (concur-
rent) man-in-the-middle attacks. Since their invention by
Dolev, Dwork, and Naor in 1991, the round-complexity of
non-malleable commitments has been extensively studied,
leading up to constant-round concurrent non-malleable
commitments based only on one-way functions, and even
3-round concurrent non-malleable commitments based on
subexponential one-way functions.

But constructions of two-round, or non-interactive, non-
malleable commitments have so far remained elusive;
the only known construction relied on a strong and
non-falsifiable assumption with a non-malleability flavor.
Additionally, a recent result by Pass shows the impossi-
bility of basing two-round non-malleable commitments on
falsifiable assumptions using a polynomial-time black-box
security reduction.

In this work, we show how to overcome this impossi-
bility, using super-polynomial-time hardness assumptions.
Our main result demonstrates the existence of a two-round
concurrent non-malleable commitment based on sub-
exponential “standard-type” assumptions—notably, as-
suming the existence of the following primitives (all with
subexponential security): (1) non-interactive commitments,
(2) ZAPs (i.e., 2-round witness indistinguishable proofs),
(3) collision-resistant hash functions, and (4) a “weak”
time-lock puzzle.

Primitives (1),(2),(3) can be based on e.g., the dis-
crete log assumption and the RSA assumption. Time-lock
puzzles—puzzles that can be solved by “brute-force” in
time 2t, but cannot be solved significantly faster even using
parallel computers—were proposed by Rivest, Shamir,
and Wagner in 1996, and have been quite extensively
studied since; the most popular instantiation relies on
the assumption that 2t repeated squarings mod N = pq
require “roughly” 2t parallel time. Our notion of a “weak”
time-lock puzzle, requires only that the puzzle cannot be
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solved in parallel time 2t
ε

(and thus we only need to
rely on the relatively mild assumption that there are no
huge improvements in the parallel complexity of repeated
squaring algorithms).

We additionally show that if replacing assumption
(2) for a non-interactive witness indistinguishable proof
(NIWI), and (3) for a uniform collision-resistant hash
function, then a non-interactive (i.e., one-message) version
of our protocol satisfies concurrent non-malleability w.r.t.
uniform attackers.

Keywords-Non-malleable commitment; 2-message; non-
interactive; time-lock puzzles

I. INTRODUCTION

Commitment schemes are one of the most fundamen-

tal cryptographic building blocks. Often described as

the “digital” analogue of sealed envelopes, commitment

schemes enable a sender to commit itself to a value

while keeping it secret from the receiver. This property

is called hiding. Furthermore, the commitment is bind-
ing, and thus in a later stage when the commitment is

opened, it is guaranteed that the “opening” can yield

only a single value determined in the committing stage.

For many applications, however, the most basic secu-

rity guarantees of commitments are not sufficient. For

instance, the basic definition of commitments does not

rule out an attack where an adversary, upon seeing a

commitment to a specific value v, is able to commit to

a related value (say, v − 1), even though it does not

know the actual value of v. To address this concern,

Dolev, Dwork and Naor (DDN) introduced the concept

of non-malleable commitments [1]. Loosely speaking,

a commitment scheme is said to be non-malleable if it

is infeasible for an adversary to “maul” a commitment

to a value v into a commitment to a related value ṽ.

The notion of a concurrent non-malleable commitment
[1], [2] further requires non-malleability to hold even

if the adversary receives many commitments and can

itself produce many commitments.

The first non-malleable commitment protocol was

constructed in the original work of [1] in 1991, based

on the minimal assumption of one-way functions. The
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first concurrently secure construction was provided by

Pass and Rosen in 2005 [2]. Since then, a central

question in the study of non-malleability has been to

determine the exact number of communication rounds

needed for achieving (concurrent) non-malleable com-

mitments. Significant progress has been made over

the years [2]–[12]. The current state-of-the-art is that

4-round concurrent non-malleable commitments can

constructed based on one-way functions [13] and 3-

round concurrent non-malleable commitments can be

constructed from subexponentially-secure injective one-

way functions [14]–[16].

On the Existence of Two-Round or Non-Interactive
Non-malleable Commitments: The situation changes

drastically when it comes to two-round or non-

interactive (i.e., one-message) protocols: Pandey, Pass

and Vaikuntanathan [7] provided a construction of a

non-interactive non-malleable commitment based on a

new non-falsifiable hardness assumption, namely, the

existence of an adaptively-secure injective one-way
function—roughly speaking, a one-way function f that

is hard to invert on a random point y = f(x) even if you

get access to an inversion oracle that inverts it on every

other point y′ �= y. This assumption is not falsifiable

since the inversion oracle cannot be implemented in

“real-life”; additionally, note that the assumption also

has a strong non-malleability flavor—in particular, the

assumption would clearly be false if one could “maul”

y = f(x) to e.g., y′ = f(x+1). As such, this construc-

tion gives us little insight into whether we can obtain

two-round “non-malleability” from “pure scratch” (i.e.,

from “hardness” alone). Indeed, a recent work by Pass

[17] showed that there are some inherent limitations

to reducing 2-round non-malleability from falsifiable

assumptions. More precisely, Pass shows that if a 2-

round non-malleable commitment that can be proven se-

cure using a polyomial-time (or even super-polynomial,

but security preserving) black-box reduction R, then

the reduction R can itself break the assumption. In

particular, this rules out basing 2-round non-malleability

(using black-box reduction) on falsifiable polynomial-

time hardness assumptions.

Towards overcoming this barrier, a recent work by

Goyal, Khurana and Sahai [18] presents a two-message

protocol in a stronger “synchronous model” of commu-

nication (and achieving only a weaker notion of no-

tion of non-malleability “w.r.t. opening”). In this work,

we focus on the standard communication model (and

the standard notion of non-malleability) and explore

whether super-polynomial-time hardness assumptions

(and using non-security preserving reductions) can be

used to overcome this barrier:

Can we have non-interactive or 2-round
non-malleable commitment from

super-polynomial “standard-type”
assumptions?

A. Our Results

Our main result demonstrates the existence of

a two-round concurrent non-malleable commitment

scheme based on sub-exponential “standard-type”

assumptions—notably, assuming the existence of the

following primitives (all with subexponential secu-

rity): (1) non-interactive commitments, (2) ZAPs (i.e.,

2-round witness indistinguishable proofs) [19], (3)

collision-resistant hash functions, and (4) a “weak”

time-lock puzzle [20].

Primitives (1),(2),(3) are all very commonly used

and can be based on e.g., the discrete log assumption

and the RSA assumption. Primitive (4) deserves some

more discussion: Time-lock puzzles—roughly speaking,

puzzles that can be solved in “brute-force” in time

2t, but cannot be solved “significantly faster” even

using parallel computers—were proposed by Rivest,

Shamir, and Wagner in 1996 [20] (following May’s

work on time-release cryptography [21]), and have since

been quite extensively used in the area of time-release

cryptography. A bit more precisely, a (T (·), B(·))-time-
lock puzzle enables a “sender” to efficiently generate a

puzzle puzz with a solution s and a designated “level”

of hardness t = t(n) where n is the security parameter,

so that: (i) the puzzle solution can be found in (uniform)

time 2t, but (ii) the puzzle solution cannot be recovered

by any B(n)-size attacker with (parallel) running-time

(i.e., circuit depth) T = T (t) (where T (t) << t
determines the “hardness gap” of the puzzle). Typical

applications of time-lock puzzles only require security

against polynomial-size attackers, thus it suffices to let

B(·) be any slightly super-polynomial function; how-

ever, they require the hardness gap to be very small—

namely, T = 2δt or even T = δ2t (i.e., the problem

is inherently “sequential” and the honest puzzle solver

is essentially is optimal, even if you have access to

parallel computers). In this work, we will need security

against subexponential-size attackers, but in contrast,

only require the existence of a time-lock puzzle with

a relatively “large” hardness gap—we only need the

puzzle to be hard to break for time T = 2n
ε

for some

constant ε.

Theorem 1 (Main Theorem, Informal). Let T and
B be two arbitrary subexponential functions. Assume
the existence of non-interactive commitments, a ZAP,
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a family of collision-resistant hash functions, all with
subexponential-security, and the existence of a (T,B)-
time-lock puzzle. Then, there exists a 2-round concurrent
non-malleable commitment.

The original construction of time-lock puzzles due

to Rivest, Shamir, and Wagner [20] is based on the

hardness of a very natural strengthening of the factoring

problem referred to as the repeated squaring problem:

given a random RSA-modulus N = pq, and a random

(or appropriately chosen) element g, compute

g2
2t

mod N

Clearly, this can be done using 2t repeated squarings.

The RSW assumption is that this task cannot be sig-

nificantly sped up, even using parallel resources, unless

N can be factored. Given the current state-of the art,

the repeated squaring problem appears to be hard for

strongly exponential parallel-time: T (t) = δ2t (that is,

basically, no non-trivial speed-up to repeated squaring

is possible); indeed, this strong assumption is typically

used in the literature on time-release cryptography (in

fact, several significantly stronger versions of this as-

sumption, where additional leakage is given, are also

typically considered—see e.g., the “generalized Blum-

Blum-Schub assumption” of Boneh-Naor [22].)

Since we only need a “weakly”-secure time-lock

puzzle where the hardness gap is large, it suffices for us

to make a significantly weaker, subexponential, repeated

squaring assumption, that is,

2t repeated squarings (modulo N = pq)
cannot be done in parallel-time 2t

ε

More formally:

Assumption 1 (Subexponential Repeated Squaring As-

sumption). There exists subexponential functions T,B
and a constant c such that for every function t(·) such
that c log n < t(n) < B(n), the following holds:
For every size B(·)-attacker A with running-time (i.e,.
circuit depth) T (t(·)), there exists a negligible function
μ such that for every n ∈ N, the probability that A,
given g,N where N is a randomly chosen n-bit RSA-
modulus, and g is a randomly chosen (or appropriately
fixed) element in Z∗N , can compute g2

2t

mod N is
bounded by μ(n).

We remark that, in our eyes, the subexponential

repeated squaring assumption is milder than most “stan-

dard” subexponential assumptions used in the crypto-

graphic literature (such as e.g., the subexponential DDH

assumption, which is a decisional assumption), and has

a stronger “win-win” flavor than most cryptographic

assumptions: Repeated squaring is a problem that arises

naturally in the design of algorithms (e.g., any im-

provement on repeated squaring would yield improved

efficiency for the verification of RSA-based signatures.)
We finally mention that the time-lock puzzle needed

for our construction can also be based on the existence

of a parallel-time hard language and indistinguishability

obfuscation (with subexponential security) by the work

of Bitansky et al. [23].)
Towards Non-interactive Non-malleable Commit-

ments: We also address the question of whether fully

non-interactive (i.e., single-message) non-malleable

commitments are possible. We show that if we re-

place the assumption of the existence of ZAPs (i.e.,

two-message witness indistinguishability) with non-

interactive witness indistinguishable proofs (NIWI)

[24]–[26], and the existence of families of collision-

resistant hash functions for a single, uniform, collision-

resistant hash function [27], [28], then a slightly mod-

ified non-interactive version of our protocol satisfies

concurrent non-malleability w.r.t. uniform attackers: Ba-

sically, the first message of our two-round protocol only

contains the first message of the ZAP, and the index of

the hash function, so by relying on a NIWI and a single

hash function (secure against uniform subexponential-

time attackers), the first message can be skipped.

Theorem 2 (Informal). Let T and B be two arbitrary
subexponential functions. Assume the existence of non-
interactive commitments, a NIWI, a uniform collision-
resistant function, all with subexponential-security, and
the existence of a (T,B)-time-lock puzzle. Then, there
exists a one-message concurrent non-malleable commit-
ment secure w.r.t. uniform polynomial-time adversaries.

We leave open the question of whether we can get

a non-interactive non-malleable commitment w.r.t. also

non-uniform attackers.
A Remark on “Sub-subexponential” Security: Let

us finally mention that although for the simplicity of

notation we rely on subexponential hardness assump-

tion, our actual proof reveals that we only need to rely

on “sub-subexponential” hardness assumption for all the

primitives we rely on: namely, we only require security

to hold w.r.t. attackers of size (and depth) 2n
1/log log n

(and in fact, even slightly less).
Why Time-Lock Puzzles? Our Ideas In a Nut Shell:

In cryptography, the power, or resource, of attackers

is usually measured by their running-time when rep-

resented as Turing machines, or equivalently by their

circuit-size when represented as circuits. Time-lock puz-

zles, and more generally time-release cryptography [21],

[22], [29]–[31], on the other hand, measure the resource
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of attackers by their parallel running-time or equiva-

lently by their circuit-depth. Our 2-round non-malleable

commitments crucially rely on the synergy of these two

types of resources. The key idea is, instead of measuring

the hardness of commitment schemes in a single “axis”

of resource, measure the hardness in two axes, one

refers to circuit-size and the other to circuit-depth.

By doing so, we can construct a pair of commitment

schemes Com1,Com2 that are simultaneously harder

than the other, in different axes. In particular, Com2

is harder in the axis of circuit-size, in the sense that

Com1 admits an extractor of size S while Com2 is

secure against all circuits of size S; on the other hand,

Com1 is harder in the axis of circuit-depth, in the sense

that it admits an extractor of depth D (and some size

S) while Com1 is hiding against all circuits with depth

D (and size S). Such a pair of commitment schemes

that are mutually harder than each other already has

a weak flavor of non-malleability, which can then be

amplified to achieve full-fledged non-malleability. More

precisely, we transform the aforementioned commitment

schemes, which are non-malleable w.r.t. short “tags” to

that for much longer “tags” (explained below), while

keeping two rounds. A step in the transformation lifts

non-malleability in the stand-alone setting to that in the

concurrent setting.

B. Concurrent and Independent Work

A concurrent and independent, beautiful, work by

Khurana and Sahai (KS) [32], [33] also presents a

construction of 2-round non-malleable commitments

from subexponential “standard-type” assumptions. The

results, however, are incomparable, both in terms of

assumptions, and also in terms of the achieved results

(and use significantly different techniques).

In terms of the achieved results, our protocols

satisfy full concurrent non-malleability, whereas the

KS protocol only satisfies “bounded-concurrent” non-

malleability—which is a weaker notion of concurrent

non-malleability where the number of sessions is an a-
priori bounded by some pre-determined polynomial in

the security parameter; in particular, the communication

complexity of their protocol grows super linearly with

the bound on the number of sessions, and the complexity

assumptions they rely on need to be parametrized by it.

Additionally, we also present a fully non-interactive pro-

tocol, whereas their technique appears to be inherently

limited to two-round protocols.

In terms of assumptions, the key difference is that

KS does not rely on time-lock puzzles but rather on

the existence of certain 2-round secure two-party com-

putation protocols (with super-polynomial-time simula-

tion security); they also claim that such protocols can

be constructed based on the subexponential DDH as-

sumption, or the subexponential QR assumption. These

assumptions are incomparable to the subexponential

repeated squaring assumption. While DDH and QR are

clearly more typical assumptions in the literature on

cryptographic protocols, as we mentioned above, the

repeated squaring assumption is, in our eyes, perhaps an

even more natural computational problem that has been

extensively studied over the years. On a qualitative level,

it is also a search assumption (and thus our construction

of non-malleable commitments can be based on search

assumptions), whereas the KS construction (due to the

above DDH, or QR, assumption) relies on “decisional

assumptions”.

C. Organization

In Section II, we give a detailed overview of our

approach for constructing 2-round non-malleable

commitments. Namely, first we construct commitment

schemes for short tags that are both mutually hard

but in different axes and show that these already

have a weak flavour of non-malleability. Then, we

amplify the weak non-malleability to standard notion

of non-malleability using a novel round-preserving

transformation, a detailed account of which is presented

in Section III. We refer the reader to [34] for more

details.

II. OVERVIEW

Every statistically binding commitment scheme is

hiding against polynomial-sized circuits, while ex-
tractable by some exponential-sized circuit (such an

extractor is guaranteed to exist since one can always

find the committed value by brute force). In this work,

we pay special attention to the gap between the “re-

sources” of attackers and that of extractors. Moreover,

we crucially rely on the synergy between different

resources — in particular, circuit-size and circuit-depth,

which are captured by the following two basic types of

commitment schemes:

Size-Robust Commitments are parametrized versions

of classical commitments: An (S, S′)-size-robust
commitment is hiding against any size-poly(S) at-

tackers, and extractable by some size-S′ extractor,

for an S′ = Sω(1) denoted as S′ >> S. Im-

portantly, the extractor has large size, but shallow
polynomial depth. Such extractors can be imple-

mented using the naı̈ve brute force strategy of

enumerating all possible decommitments, which is

a time-consuming but a highly-parallelizable task.
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Depth-Robust Commitments are natural analogues of

size-robust commitments, but with respect to the

resource of circuit-depth. A (D,D′)-depth-robust
commitment is hiding against any depth-poly(D)
circuits with size up to a large upper bound B,

and extractable by some size-D′ extractor for a

D′ >> D that necessarily has a depth super-

polynomially larger than D. In this work, we

consider a subexponential size upper bound B =
2n

ε

for some constant ε > 0; for simplicity of

exposition, we ignore this upper bound in the rest

of this overview (see Section 4 in [34] for more

detail).

Size-Robust Commitments from Subexponential In-
jective OWFs: Size-robust commitments can essen-

tially be instantiated using any off-the-shelf commit-

ment schemes that are subexponential secure, by ap-

propriately scaling the security parameter to control

the levels of security and hardness for extraction. Take

the standard non-interactive commitment scheme from

any injective one-way function f as an example: A

commitment to a bit b is of form f(r), h(r) ⊕ b,
consisting of the image f(r) of a random string r of

length n, and the committed bit b XORed with the

hard-core bit h(r). Assuming that f is subexponentially

hard to invert, the commitment is hiding against all size-

2n
ε

circuits for some constant ε > 0, while extractable

in size 2n (ignoring polynomial factors in n) and

polynomial depth. By setting the security parameter n to

(logS)1/ε, we immediately obtain a (S, S′)-size robust

commitment for S′ = 2log S1/ε

.

Depth-Robust Commitments from Time-Lock Puz-
zles: Depth-robust commitments are naturally con-

nected with cryptographic objects that consider parallel-

time complexity, which corresponds to circuit-depth.

When replacing subexponentially-hard one-way func-

tions in the above construction with time-lock puzzles,

we immediately obtain depth-robust commitments:

- To commit to a bit b, generate a puzzle puzz with

a random solution s and a designated level of

hardness t, and hide b using the Goldreich-Levin

hard-core bit, producing C = (puzz, r, 〈r, s〉 ⊕ b)
as the commitment.

- To decommit, the committer can simply reveal the

puzzle solution s together with the random coins ρ
used for generating the puzzle. The receiver verifies

that the puzzle is honestly generated with solution

s, and uses s to recover the committed bit b.

Since the time-lock puzzle solution s is hidden against

adversaries in parallel-time T (t) (and overall time

B(n)), the commitments are hiding against depth-T (t)

adversaries (with size up to B(n)). Moreover, since

the puzzles can be “forcefully” solved in time 2t, the

committed values can be extracted in size 2t. This gives

a (T, 2t)-depth-robust commitment.

Next, we show how to compose the basic size-robust

and depth-robust commitment schemes to overcome

Pass’s impossibility result on 2-round non-malleable

commitments.

A. Towards Overcoming the Impossibility Result

In the literature, there are two formulations of non-

malleable commitments, depending on whether the

commitment scheme uses players’ identities or not.

The formulation with identities, adopted in this work,

assumes that the players have identities of certain length

�, and that the commitment protocol depends on the

identity of the committer, which is also referred to as

the tag of the interaction. Non-malleability ensures that,

as long as the tags of the left and right commitments

are different (that is, the man-in-the-middle does not

copy the identity of the left committer), no man-in-the-

middle attacker can “maul” a commitment it receives

on the left into a commitment of a related value it gives

on the right. This is formalized by requiring that for

any two values v1, v2, the values the man-in-the-middle

commits to after receiving left commitments to v1 or v2
are indistinguishable.

The length � of the tags can be viewed as a quanti-

tative measure of how non-malleable a scheme is: An

�-bit tag non-malleable commitment gives a family of 2�

commitment schemes — each with a hardwired tag —

that are “mutually non-malleable” to each other. There-

fore, the shorter the tags are, the easier it is to construct

such a family. Full-fledged non-malleable commitments

have tags of length equal to the security parameter

� = n, and hence corresponds to a exponentially sized

family. However, when the number of communication

rounds is restricted to 2, Pass [17] showed that even the

weakest non-malleable commitment for just 1-bit tags,

corresponding to a size 2 family, cannot be reduced from

falsifiable assumptions, via a polynomial-time black-

box reduction.

One-Sided Non-Malleability via Complexity Lever-
aging: It is well known that one-sided non-malleability
can be achieved easily via complexity leveraging. One-

sided non-malleability only prevents mauling attacks

when the tag of the left commitment is “larger than”

the tag of the right commitment 1. In the simple case of

1The choice that the left tag is smaller than the right tag is not
important. One could also require the opposite that the left tag is larger
than the right tag. The limitation is that the design of the commitments
depends on this arbitrary decision.
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1-bit tags, this requires the commitment for tag 1 (on the

left) to be non-malleable w.r.t. the commitment for tag

0 (on the right), which holds if the tag-1 commitment

is “harder” than the tag-0 commitment. For example,

if the tag-1 commitment is (S1, S
′
1)-size-robust while

the tag-0 commitment is (S0, S
′
0)-size-robust for some

S0 << S′0 << S1 << S′1, then one can extract the right

committed value using a size-S1 extractor, while the left

committed value still remain hidden. Therefore, the right

committed value must be (computationally) independent

of the left. Similarly, we can also achieve one-sided non-

malleability using depth-robust commitments, by using

a (D1, D
′
1)-depth robust commitment scheme for tag 1

and a (D0, D
′
0)-depth robust commitment scheme for

tag 0, for some D0 << D′0 << D1 << D′1.
However, simple complexity leveraging is inherently

limited to one-sided non-malleability, since when only

one resource is considered, the tag-1 commitment can-

not be both harder and easier than the tag-0 commit-

ment.
Two Resources for (Two-Sided) Non-Malleability:

Therefore, our key idea is using two resources to create

two “axes”, such that, the tag-1 commitment and tag-0

commitment are simultaneously “harder” than the other,

but, with respect to different resources. This is achieved

by combining the basic size-robust and depth-robust

commitment schemes in the following simple way.

Basic 1-bit Tag Non-Malleable Commitment:
For some D0 << D′0 << D1 << D′1 << S0 <<
S′0 << S1 << S′1,

- a tag-0 commitment to a value v consists of

commitments to two random secret shares α, β of

v, such that, v = α + β, where the first share is

committed under a (D0, D
′
0)-depth-robust commit-

ment scheme and the second under a (S1, S
′
1)-size-

robust commitment scheme, and

- a tag-1 commitment to v, on the other hand, uses

a (D1, D
′
1)-depth-robust commitment scheme to

commit to the first share and a (S0, S
′
0)-size-robust

commitment scheme to commit to the second

share.

Thus, the tag-1 commitment is harder w.r.t. circuit-

depth, while the tag-0 commitment is harder w.r.t.

circuit-size. Leveraging this difference, one can extract

from a tag-0 commitment (on the right) without vio-

lating the hiding property of a tag-1 commitment (on

the left), and vice versa — leading to two-sided non-

malleability. More specifically, the committed values

in a tag-0 commitment can be extracted in depth D′0
and size S′1 by extracting both secret shares from the

size- and depth-robust commitments contained in it. Yet,

adversaries with such depth and size cannot break the

(D1, D
′
1)-depth-robust commitment contained in a tag-1

commitment; thus, the value committed to in the tag-

1 commitment remains hidden. On the flip side, the

committed value in a tag-1 commitment can be extracted

in depth D′1 and size S′0, and, similarly, adversaries

with such depth and size do not violate the hiding of a

tag-0 commitment, due to the fact that the size-robust

commitment contained in it is hiding against size-S1

adversaries.

In summary, combining the two types of commitment

schemes gives us depth-and-size robust commitment

schemes: A (D ∨ S,D′ ∧ S′)-robust commitment is

hiding against circuits with depth below D or size below

S, while extractable by some circuit with depth D and
size S, as illustrated in Figure 1 (left). In this language,

a tag-0 commitment is (D0∨S1, D
′
0∧S′1)-robust while

a tag-1 commitment is (D1∨S0, D
′
1∧S′0)-robust. They

are mutually non-malleable, because the extractor for

one falls into the class of adversaries that the other is

hiding against.

The Subtle Issue of Over-Extraction: The above

argument captures our key idea, but is overly-simplified.

It implicitly assumes that the size- and depth-robust

commitments are extractable in the perfect manner: 1)

Whenever a commitment is valid, in the sense that

there exists an accepting decommitment, the extractor

outputs exactly the committed value, otherwise, 2) when

the commitment is invalid, it outputs ⊥. Such strong

extractability ensures that to show non-malleability that

the right committed value is independent of the left

committed value, it suffices to show that the right

extracted value is independent of the left committed

value, as argued above.

However, our depth-robust commitments from time-

lock puzzles do not satisfy such strong extractability. 2

In particular, they do not satisfy the second property

above: When commitments are invalid, the extractor

can output arbitrary values — this is known as “over-

extraction”. Over-extraction traces back to the fact that

only honestly generated time-lock puzzles (i.e., in the

domain of the puzzle generation algorithm) are guaran-

teed to be solvable in certain time. There is no guarantee

for ill-generated puzzles, and no efficient procedure for

deciding whether a puzzle is honestly generated or not.

Observe that this is the case for the time-lock puzzles

proposed by Rivest, Shamir, and Wagner [20], since

given a puzzle (s + a2
2t

mod N, N) one can extract

s using 2t squaring modular N , but cannot obtain a

2Our size-robust commitments from injective one-way functions do
satisfy such strong extractability.
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Figure 1: (left) A 1-bit tag based commitment scheme: The tag-0 (resp., tag-1) commitment scheme is hiding for circuits of
depth below D0 (resp., D1) OR size below S1 (resp., S0), represented by the solid line joining D0 (resp., D1) and S1 (resp.,
S0). The tag-0 (resp., tag-1) commitment scheme admits an extractor of depth at most D′0 (resp., D′1) and size at most S′1 (resp.,
S′0). (right) This is a generalization of the 1-bit tag commitment scheme to log l-bits tags, where for tag-i the commitment
scheme is hiding for circuits of depth below Di OR size below Sl−1−i and exhibits an extractor of depth at most D′i and size
at most S′l−1−i.

proof that N is a valid RSA-modulus; this is also

the case for the other puzzle construction [23]. As a

result, the extractor of our depth-robust commitments

that extracts committed values via solving time-lock

puzzles, provides no guarantees when commitments are

invalid.

This means that our basic 1-bit tag commitment

scheme is over-extractable, and the argument above that

reasons about the right extracted value fails to establish

non-malleability. Nevertheless, the basic scheme does

satisfy a variant of non-malleability that we call non-
malleability w.r.t. extraction, which ensures that the

value extracted from the right commitment is inde-

pendent of the left committed value.3 When a com-

mitment scheme is perfectly-extractable, this new no-

tion is equivalent to standard non-malleability (w.r.t.

commitment), but with over-extraction, it becomes in-

comparable. The issue of over-extraction has appeared

in the literature (e.g., [9], [35]), standard methods for

eliminating it requires the committer to additionally

prove the validity of the commitment it sends, using for

instance zero-knowledge protocols or cut-and-choose

techniques. However, these methods take more than 2

rounds of interaction, and do not apply here.

3Our notion of non-malleability w.r.t. extraction can be viewed as
a special case of the notion of non-malleability w.r.t. replacement
defined by Goyal [10], in the sense that the replacer in Goyal’s
definition is fixed to the over-extractor of the commitment scheme.
The benefit of doing so is that we know exactly the complexity of
the extractor, which is useful in the rest of the construction.

B. Full-Fledged Non-Malleable Commitments

At this point, we face two challenges towards con-

structing full-fledged non-malleable commitments:

- Challenge 1: We need to go from non-malleability

w.r.t. extraction to non-malleability w.r.t. commit-

ment in 2 rounds. Resolving this challenge would

give a 2-round 1-bit tag non-malleable commitment

scheme.

- Challenge 2: The next challenge is going beyond

two tags, towards supporting an exponential 2n

number of tags.

It is easy to generalize our basic 1-bit tag com-

mitment scheme to handle arbitrary l tags, if there

exists a “ladder” of l commitment schemes with

increasing levels of depth-robustness, and another

“ladder” of l schemes with increasing levels of

size-robustness. Concretely, the i’th schemes are

respectively (Di, D
′
i)-depth robust and (Si, S

′
i)-

size robust, for some

· · · << Di << D′i << · · · << Dl << D′l <<

S0 << S′0 · · · << Si << S′i << · · · .
A commitment with tag i ∈ {0, · · · , l − 1}
combines the i’th (Di, D

′
i)-depth-robust scheme

and the (l− 1− i)’th (Sl−1−i, S
′
l−i−1)-size-robust

scheme to commit to a pair of secret shares of the

committed value. This gives a family of l mutually

non-malleable commitment schemes, as illustrated

in Figure 1 (right).

To directly obtain full-fledged non-malleable com-

mitments, we need an exponential number of
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levels l = 2n of depth- and size-robustness,

which is, however, impossible from the underly-

ing assumptions. From subexponentially hard in-

jective one-way functions, we can instantiate at

most O(log n/ log logn) levels of size-robustness,

and similarly, from subexponentially parallel-

time hard time-lock puzzles, we can instanti-

ate O(log n/ log logn) levels of depth-robustness.

Therefore, we need to amplify the number of tags.

We address both challenges using the a single transfor-

mation.

2-Round Tag Amplification Technique: We present

a transformation that converts a 2-round l-tag

commitment scheme that is non-malleable w.r.t.

extraction, into a 2-round 2l−1-tag commitment

scheme that is both non-malleable w.r.t. extraction

and w.r.t. commitment. The output protocol can

be further transformed to achieve concurrent non-

malleability.

With the above transformation, we can now construct

full-fledged non-malleable commitment. Start from our

basic scheme for a constant l0 = O(1) number of tags

that is non-malleable w.r.t. extraction; apply the tag-

amplification technique iteratively for m = O(log∗ n)
times to obtain a scheme for lm = 2n tags that is both

non-malleable w.r.t. extraction and w.r.t. commitment.

Previously, similar tag-amplification techniques were

presented by Lin and Pass [6] and Wee [9]. Our trans-

formation follows the same blueprint, but differ at two

important aspects. First, our transformation starts with

and preserves non-malleable w.r.t. extractability, which

is not considered in their work. Second, their ampli-

fication techniques incur a constant additive overhead

in the round complexity of the protocol, whereas our

transformation keeps the number of rounds invariant at

2. To do so, our amplification step combines ideas from

previous works with the new idea of using our depth-

and-size robust commitments to create different 2-round

sub-protocols that are mutually “non-malleable” when

executed in parallel, in the sense that the security of one

sub-protocol remains intact even when the security of

another is violated by force.

C. Overview of Our 2-Round Tag-Amplification

Similar to [6], [9], the transformation proceeds in two

steps:

- First, amplify the security of a scheme from (one-
one) non-malleability w.r.t. extraction to one-many
non-malleability w.r.t. extraction and commitment,

which, following a proof in [5], implies concurrent
(or many-many) non-malleability w.r.t. extraction

and commitment. (This is why our final pro-

tocol can be made concurrently non-malleable.)

Here, one-many and concurrent non-malleability

w.r.t. extraction or commitment naturally general-

ize standard non-malleability to the setting where

the man-in-the-middle concurrently receives one or

many commitments on the left and gives many

commitments on the right, and ensures that the

joint distribution of the values extracted from or

committed in right commitments is independent of

the value(s) committed in the left.

- Next, apply the “log-n trick” by Dolev, Dwork and

Naor [19] to amplify the number of tags supported

from l to 2l−1 at the price of losing concurrent

security, yielding a protocol that is (one-one) non-

malleable w.r.t. extraction and commitment.

The main technical challenges lie in the first step.

We briefly review the LP approach. At a high-level,

they construct one-many non-malleable commitment

following the Fiat-Shamir paradigm: The receiver starts

by setting up a hidden “trapdoor” t. The sender commits

to a value v using an arbitrary (potentially malleable) 2-

message commitment scheme, followed by committing

to 0n using a (one-one) non-malleable commitment and

proving using many witness-indistinguishable proofs of

knowledge (WIPOK) that either it knows a decommit-

ment to v or it knows a decommitment of the non-

malleable commitment to the trapdoor t; the former,

called the honest witness, is used by the honest com-

mitter, while the latter, called the fake witness, is used

for simulation.

The LP protocol arranges all components — the

trapdoor-setup, commitment to v, non-malleable com-

mitment (for trapdoor), and every WIPOK — sequen-
tially. To compress the protocol into 2 rounds, we run

all components in parallel, and replace multiple WIPOK

proofs with a single 2-round ZAP proof.

Unfortunately, arranging all components in parallel

renders the proof of one-many non-malleability in LP

invalid. They designed a sequence of hybrids in which

different components in the (single) left interaction are

gradually switched from being honestly generated to

simulated, while maintaining two invariants regarding

the (many) right interactions. First, the soundness con-

dition states that the man-in-the-middle never commits

to a trapdoor in any right interaction. Second, in ev-

ery right interaction, there is always a WIPOK that

can be rewound to extract the value committed to in

this interaction, without rewinding the left component

being changed; the value extracted must be a valid

decommitment since the fake witness does not exist
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by the soundness invariant — this establishes strong
extractability. The second invariant is true because

the LP protocol contains sufficiently many sequential

WIPOKs so that there is always a proof that does not

interleave with the left-component being changed. The

first invariant, on the other hand, relies not only on

the non-malleability of the input commitment scheme,

but also on its “robustness” to other components that

have a small fixed k number of interactions (such as

2-message commitment and WIPOK). The robustness

captures “non-malleability” w.r.t. other protocols, and

is achieved by embedding more than k rewinding slots

in the input commitment scheme.

In our 2-round protocol, we cannot afford to have

many rewinding slots for extraction, nor for establishing

non-malleability between different components. Natu-

rally, we resort to our size-and-depth robust commit-

ments, which can be made mutually non-malleable w.r.t.

extraction by setting the appropriate profiles of size-

and-depth robustness. We embed a family of 4 such

schemes in different components of the protocol, and

mimic the LP proof in the following (overly-simplified)

manner: In every hybrid, in the left interaction, either a

size-and-depth robust commitment or the non-malleable

commitment is changed, while on the right, values

are extracted from a different size-and-depth robust

commitment and from the non-malleable commitment.

This idea works, although we need to overcome several

major challenges; we describe the challenges and show

how to overcome them in the next section.

Finally, in the above transformation, the hardness

of size-and-depth robust commitments must be set

appropriately according to that of the non-malleable

commitment scheme.

This concludes the overview of our construction of

2-message concurrent non-malleable commitment. Due

to the lack of space, we refer the reader to the full

version [34] for formal description of the protocols

and security proofs. Furthermore, the non-malleable

commitment scheme produced by the above transfor-

mation has weaker security than the input scheme. As

a result, to iteratively apply the tag-amplification tech-

nique for O(log∗ n) times, we need O(log∗ n) levels

of depth- and size-robustness. This can be easily in-

stantiated using subexponentially secure non-interactive

commitment schemes and time-lock puzzles as stated in

Theorem 1.

III. STRENGTHENING NON-MALLEABILITY

We now give more details on how to transform a

commitment scheme 〈C,R〉 that is only (one-one) non-

malleable w.r.t. extraction, into a commitment scheme

〈 ̂C, ̂R〉 that is (one-many) non-malleable w.r.t. commit-

ment and w.r.t. extraction. As discussed above, we start

with the following bare-bone protocol inspired by [6].

A Bare-Bone Protocol 〈 ̂C, ̂R〉: The receiver sends

a puzzle puzz (whose solution s is the required trap-

door), together with the first message aNM of 〈C,R〉 and

the first message aZAP of ZAP. The committer commits

to v using a non-interactive commitment scheme Com,

sends the second message bNM of 〈C,R〉 committing

to a random string r1, and the second message bZAP
of ZAP proving that either i) c1 commits to v or ii)

(aNM, bNM) commits to a solution s of the puzzle puzz
(which is efficiently verifiable).

̂C ̂Rpuzz, aNM, aZAP

Com(v), bNM, bZAP

To show the security, ideally, we would like different

components — puzz, 〈C,R〉, Com, and ZAP — to be

mutually non-malleable. Informally speaking, we say

that a primitive P is more secure than a primitive Q,

denoted as P 
 Q, if the security of P holds even when

security of Q is broken by force; P and Q are mutually

non-malleable if P ≺
 Q. The ideal configuration is

illustrated in Figure 2 (i). Towards realizing as many

constraints in the ideal configuration as possible, the

first idea is using three size-and-depth robust commit-

ment schemes ECom1,ECom4,ECom3 to implement

Com and puzz, and augment ZAP so that they become

mutually non-malleable. But, we run into problems with

respect to the input non-malleable commitment 〈C,R〉.
Challenge 1: 〈C,R〉 is only secure against adversaries

which have both bounded depth AND bounded

size. This is the case for the basic schemes de-

scribed in 1, as well as the schemes produced by

the transformation in this section.) This type of

AND security means either a primitive P is more

secure than 〈C,R〉 or less, but cannot be mutually

non-malleable. Though through a more careful

analysis, we can remove some constraints w.r.t.

the non-malleable commitment, it still requires

〈C,R〉 ≺
 puzz, in order to show the security

of the bare-bone protocol.

Challenge 2: In addition, constructing a puzzle from

size-and-depth robust commitment ECom4 is not

straightforward. If we naively use puzz =
ECom4(s) as a puzzle, a malicious man-in-the-

middle can send an invalid commitment, which

has no solution; this would make the security

proof stuck. To prevent this, one straightforward
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(i) Ideal Configuration (ii) Assume NIWI (iii) Assume CRH

Figure 2: The relation between different primitives. (i): The ideal configuration where all primitives are mutually non-malleable
to each other; however, it cannot be instantiated. (ii) A sufficient configuration; it can be instantiated assuming NIWI. (iii): A
sufficient configuration, which can be instantiated assuming collision resistant hash functions or one-way permutations. (The
dashed line is by transitivity.)

approach is asking the receiver to send two puzzles

and prove using NIWI that at least one of them

is well-formed. However, this requires relying the

exsitence of NIWI.

To resolve Challenge 1, we modify the bare bone pro-

tocol using an additional size-and-robust commitment

ECom2. The key idea is creating a “buffer” between

〈C,R〉 and puzz, by setting the following relation:

ECom2 
 〈C,R〉, 〈C,R〉 
 puzz, and ECom2 ≺

puzz, as illustrated in Figure 2 (ii). Note that now

the non-malleable commitment does not need to satisfy

mutual non-malleability with either ECom2 or puzz. On

the other hand, the mutual non-malleability of ECom2

and puzz helps the security proof to go through.

However, to fulfill the relation ECom2 ≺
 puzz,
it seems necessary to instantiate puzz using a size-

and-depth robust commitment scheme, which however

would involve using NIWI. To avoid this, we would

like to set puzz to be, for example, a randomly chosen

collision resistant hash (CRH) function h, or a randomly

chosen image y = f(s) of a one-way permutation

(OWP), whose corresponding solutions are respectively

a collision of h and a preimage of y. These puzzles have

the advantage that their validity are efficiently verifiable

and hence NIWI can be disposed. But, a problem with

using, say, h as the puzzle is that, it cannot be mutually

non-malleable with ECom2. To resolve this, we use

a h 
 ECom2, and to compensate for the fact that

h �≺ ECom2, we use non-uniformity in the proof as

follows: When reducing to the security of ECom2, the

reduction instead of finding a collisioin of h by force,

receives a collision as a non-uniform advice. This can

be done since the puzzle h is sent in the first message

completely before the ECom2 commitment.

Unfortunately, instantiating the puzzles using CRH

or OWP creates another problem: Given that 〈C,R〉 

puzz = h and h 
 ECom2, it actually implies that

〈C,R〉 
 ECom2. This transitivity holds because the h
is only secure against attackers with bounded size. (If h
were replaced with another size-and-depth robust com-

mitment ECom′, then transitivity does not hold in gen-

eral.) But this means 〈C,R〉 needs to be mutually non-

malleable with ECom2 again. To solve this problem, we

again use the idea of creating “buffers”. More specifi-

cally, we set the following relation: ECom4 
 〈C,R〉,
〈C,R〉 
 puzz, puzz 
 ECom2, and ECom2 ≺

ECom4, as illustrated in Figure 2 (iii). Now transitivity

implies that 〈C,R〉 
 ECom2, but 〈C,R〉 no longer

need to be simultanously weaker than ECom2, and only

needs to be weaker than the new “buffer” ECom4.

Moreover, the mutual non-malleability between ECom2

and ECom4 helps the proof to go through.

Commitment Scheme 〈 ̂C, ̂R〉: With building blocks

described above, namely ECom1, · · · ,ECom4, h,

〈C,R〉 satisyfing relations in Figure 2 (iii), we now

describe our construction of 〈 ̂C, ̂R〉 that is both concur-

rently non-malleable w.r.t. extraction, and concurrently

non-malleable w.r.t. commitment.

The committer ̂C and the receiver ̂R receive the

security parameter 1n and identity id ∈ {0, 1}t(n) as

common input. Furthermore, ̂C gets a private input

v ∈ {0, 1}n which is the value to be committed.

- Commit stage - First round:

1) ̂R samples a hash function h from H.
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2) ̂R samples the first message aZAP of ZAP.

3) ̂R generates the first message aNM of 〈C,R〉
using the honest receiver R with identity id.

4) ̂R sends (h, aZAP, aNM) as the first round mes-

sage to ̂C.

- Commit stage - Second round:

1) a) ̂C computes a commitment c1 to the value

v using ECom1. Let d1 be the corresponding

decommitment string.

b) ̂C computes a commitment c3 to the decom-

mitment (v, d1) of c1 using ECom3.

2) a) ̂C computes a commitment c2 to a random

string r1 using ECom2.

b) Given aNM, ̂C computes the second message

bNM of 〈Ĉ, R̂〉 using the honest committer C
with identity id to commit to a random string

r2.

c) ̂C computes a commitment c4 to a random

string r3 using ECom4.

3) Given aZAP, ̂C computes the second mes-

sage bZAP of ZAP to prove the following OR-

statement:

a) either there exists a string v̄ such that c1
is a commitment to v̄ and c3 commits to a

decommitment of c1.

b) or there exists a string s̄ = (x1, x2) such that

c2 is a commitment to s̄ and c4 commits to a

decommitment of c2 and (aNM, bNM) commit

to a decommitment of c4 and h(x1) =
h(x2).

̂C proves the statement (a) by using a decom-

mitment of c3 to (v, d1) — decommitment of

c1 to v — as the witness.

4) ̂C sends (c1, c2, c3, c4, bNM, bZAP) as the sec-

ond message to ̂R and keeps the decommitment

(v, d1) private.

- Reveal stage:

On receiving (v, d1) from ̂C, ̂R accepts the de-

commitment if the ZAP proof is accepting and if

EOpen1(c1, v, d1) = 1. Otherwise, it rejects.

We refer to the entire transcript of the interaction

as the commitment c, and we say a commitment c is

accepting if the ZAP proof contained in c is accepting.

According to the reveal stage, the value val(c) of a com-

mitment c is the value committed under c1 (contained

in c) if c is accepting. Otherwise, val(c) is ⊥.

Since the depth-and-size robust commiment ECom1

is over-extractable, so is the scheme 〈Ĉ, R̂〉. Let oE1 be

the extractor for ECom1, then the following machine
̂oENM is an extractor for 〈Ĉ, R̂〉.

- Extraction - Extractor ̂oENM:

On receiving a commitment c and identity id,
̂oENM first verifies the ZAP proof and outputs ⊥
if the proof is not accepting. Otherwise, it runs the

extractor oE1 on c1 and outputs the extracted value

v′.

Theorem 3. 〈 ̂C, ̂R〉 is a 2-round perfectly binding, com-
mitment scheme for identities of length t(n), satisfying
concurrent non-malleability w.r.t. extraction by ̂oENM,
and concurrent non-malleability (w.r.t. commitment).

Due to the lack of space, We refer the reader to the

full version [34] for the proof of the theorem.
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