
Linear algebraic analogues of
the graph isomorphism problem and the Erdős-Rényi model
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Abstract—A classical difficult isomorphism testing problem
is to test isomorphism of p-groups of class 2 and exponent
p in time polynomial in the group order. It is known that
this problem can be reduced to solving the alternating matrix
space isometry problem over a finite field in time polynomial
in the underlying vector space size. We propose a venue of
attack for the latter problem by viewing it as a linear algebraic
analogue of the graph isomorphism problem. This viewpoint
leads us to explore the possibility of transferring techniques
for graph isomorphism to this long-believed bottleneck case of
group isomorphism.

In 1970’s, Babai, Erdős, and Selkow presented the first
average-case efficient graph isomorphism testing algorithm
(SIAM J Computing, 1980). Inspired by that algorithm, we
devise an average-case efficient algorithm for the alternating
matrix space isometry problem over a key range of parameters,
in a random model of alternating matrix spaces in vein of the
Erdős-Rényi model of random graphs. For this, we develop
a linear algebraic analogue of the classical individualisation
technique, a technique belonging to a set of combinatorial
techniques that has been critical for the progress on the worst-
case time complexity for graph isomorphism, but was missing in
the group isomorphism context. This algorithm also enables us
to improve Higman’s 57-year-old lower bound on the number
of p-groups (Proc. of the LMS, 1960). We finally show that
Luks’ dynamic programming technique for graph isomorphism
(STOC 1999) can be adapted to slightly improve the worst-
case time complexity of the alternating matrix space isometry
problem in a certain range of parameters.

Most notable progress on the worst-case time complexity
of graph isomorphism, including Babai’s recent breakthrough
(STOC 2016) and Babai and Luks’ previous record (STOC
1983), has relied on both group theoretic and combinatorial
techniques. By developing a linear algebraic analogue of the
individualisation technique and demonstrating its usefulness in
the average-case setting, the main result opens up the possibility
of adapting that strategy for graph isomorphism to this hard
instance of group isomorphism. The linear algebraic Erdős-
Rényi model is of independent interest and may deserve further
study.

Keywords-group isomorphism; graph isomorphism; Erdős-
Rényi model; individualisation and refinement;

I. INTRODUCTION

A. Problems, postulates, and models

Let Fq be the finite field with q elements. An n×n matrix

P over Fq is alternating, if for every u ∈ F
n
q , utPu = 0.1

Λ(n, q) denotes the linear space of n×n alternating matrices

over Fq , and a dimension-m subspace of Λ(n, q) is called an

m-alternating (matrix) space. GL(n, q) denotes the general

linear group of degree n over Fq . We study the following

problem.

Problem 1 (Alternating matrix space isometry prob-

lem, ALTMATSPISO). Given the linear bases of two m-

alternating spaces G,H in Λ(n, q), decide whether there

exists A ∈ GL(n, q), such that AtGA := {AtPA : P ∈ G}
is equal to H as subspaces.

If such an A exists, we say that G and H are isomet-
ric. As will be explained in Section I-B, ALTMATSPISO

has been studied, mostly under other names, for decades.

It lies at the heart of the group isomorphism problem

(GROUPISO), and has an intimate relationship with the

celebrated graph isomorphism problem (GRAPHISO). As a

problem in NP∩ coAM, its worst-case time complexity has

barely been improved over the brute-force algorithm. In fact,

to obtain qO(n+m)-time algorithm is already regarded as

very difficult.

Let us recall one formulation of GRAPHISO. For n ∈
N, let [n] = {1, 2, . . . , n}, and Sn denotes the symmetric

group on [n]. A simple undirected graph is just a subset of

Λn := {{i, j} : i, j ∈ [n], i �= j}. A permutation σ ∈ Sn

induces a natural action on Λn. The following formulation of

GRAPHISO as an instance of the setwise transporter problem

is well-known [35].

Problem 2 (Graph isomorphism problem, GRAPHISO).
Given two subsets G,H of Λn, decide whether there exists

1A is skew-symmetric if P t = −P . When F is of characteristic not 2,
skew-symmetric and alternating are equivalent. When F is of characteristic
2, alternating implies skew-symmetric but not vice versa.
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σ ∈ Sn, such that Gσ := {{iσ, jσ} : {i, j} ∈ G} is equal

to H as sets.

The formulations of ALTMATSPISO and GRAPHISO as in

Problem 1 and Problem 2 lead us to the following postulate.

Postulate 1. ALTMATSPISO can be viewed and studied as
a linear algebraic analogue of GRAPHISO.

Postulate 1 originates from the following meta-postulate.

Meta-postulate. Alternating matrix spaces can be viewed
and studied as a linear algebraic analogue of graphs.

This meta-postulate will be studied further in [43]. As a

related note, recent progress on the non-commutative rank

problem suggests the usefulness of viewing linear spaces of

matrices as a linear algebraic analogue of bipartite graphs

[20, 25, 26].

From the meta-postulate, we formulate a model of random

alternating matrix spaces over Fq . Let
[ ]

q
be the Gaussian

binomial coefficient with base q.

Model 1 (The linear algebraic Erdős-Rényi model). The
linear algebraic Erdős-Rényi model, LINER(n,m, q), is the
uniform probability distribution over the set of dimension-
m subspaces of Λ(n, q), that is, each subspace is endowed
with probability 1/

[(n2)
m

]
q
.

Model 1 clearly mimics the usual Erdős-Rényi model.

Model 2 (Erdős-Rényi model). The Erdős-Rényi model
ER(n,m) is the uniform probability distribution over the
set of size-m subsets of Λn, that is, each subset is endowed
with probability 1/

((n2)
m

)
.

We then pose the following postulate.

Postulate 2. LINER(n,m, q) can be viewed and studied as
a linear algebraic analogue of ER(n,m).

B. Background of the alternating matrix space isometry
problem

While the name ALTMATSPISO may be unfamiliar to

some readers, this problem has been studied for decades as

an instance – in fact, the long-believed bottleneck case – of

the group isomorphism problem. This problem also has an

intricate relationship with the graph isomorphism problem.

We first review these connections below, and then examine

the current status of this problem.

1) Relation with the group isomorphism problem: We

first introduce the group isomorphism problem (GROUPISO)

and mention a long-believed bottleneck instance of this prob-

lem. It turns out that ALTMATSPISO is almost equivalent to

this instance.

GROUPISO asks to decide whether two finite groups

of order n are isomorphic. The difficulty of this problem

depends crucially on how we represent the groups in the

algorithms. If our goal is to obtain an algorithm running

in time poly(n), then we may assume that we have at our

disposal the Cayley (multiplication) table of the group, as we

can recover the Cayley table from most reasonable models

for computing with finite groups. Therefore, in the main

text we restrict our discussion mostly to this very redundant

model, which is meaningful mainly because we do not know

a poly(n)-time or even an no(logn)-time algorithm [50]

(log to the base 2), despite that a simple nlogn+O(1)-time

algorithm has been known for decades [18, 40]. The past few

years have witnessed a resurgence of activity on algorithms

for this problem with worst-case analysis in terms of the

group order; we refer the reader to [21] which contains a

survey of these algorithms.

It is long believed that p-groups form the bottleneck

case for GROUPISO. In fact, the decades-old quest for a

polynomial-time algorithm has focused on class-2 p-groups,

with little success. Even if we restrict further to consider

p-groups of class 2 and exponent p, the problem is still

difficult. Recent works [12, 13, 24, 31] solve some nontrivial

subclasses of this group class, and have lead to substantial

improvement in practical algorithms. But the methods in

those works seem not helpful enough to lead to any im-

provement for the worst-case time complexity of the general

class.

By a classical result of Baer [9], testing isomorphism of

p-groups of class 2 and exponent p in time polynomial in

the group order reduces to solving ALTMATSPISO over Fp

in time pO(m+n). On the other hand, there also is an inverse

reduction for p > 2. In fact, when such p-groups are given

by generators in the permutation group quotient model [27],

isomorphism testing reduces to solving ALTMATSPISO in

time poly(n,m, log p) [12]. Because of these reductions and

the current status of GROUPISO, we see that ALTMATSPISO

lies at the heart of GROUPISO, and solving ALTMATSPISO

in qO(m+n) is already very difficult.

We now recall the reductions mentioned in the last para-

graph, which is classical by [9, 47], but seems not well-

known among theoretical computer scientists. See also [49]

and [21].

Suppose we are given two p-groups of class 2 and

exponent p, G1 and G2 of order p�. For Gi, let bi :
Gi/[Gi, Gi] × Gi/[Gi, Gi] → [Gi, Gi] be the commutator

map where [Gi, Gi] denotes the commutator subgroup. By

the class 2 and exponent p assumption, Gi/[Gi, Gi] are ele-

mentary abelian groups of exponent p. For G1 and G2 to be

isomorphic it is necessary that [G1, G1] ∼= [G2, G2] ∼= Z
m
p

and G1/[G1, G1] ∼= G2/[G2, G2] ∼= Z
n
p such that m+n = �.

Furthermore bi’s are alternating bilinear maps. So we have

alternating bilinear maps bi : F
n
p×F

n
p → F

m
p . G1 and G2 are

isomorphic if and only if there exist A ∈ GL(n, p) and D ∈
GL(n, p) such that for every u, v ∈ F

n
p , b1(A(u), A(v)) =

D(b2(u, v)). The latter is also known as the pseudo-isometry
testing problem of alternating maps. Representing b1 and

b2 as tuples of alternating matrices G1 = (P1, . . . , Pm) ∈
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Λ(n, p)m and G2 = (Q1, . . . , Qm) ∈ Λ(n, p)m, it translates

to ask whether AtG1A = GD
2 . Let G1 (resp. G2) be the

linear span of G1 (resp. G2). This becomes an instance of

ALTMATSPISO w.r.t. G1 and G2.

When p > 2, we can reduce ALTMATSPISO to isomor-

phism testing of p-groups of class 2 and exponent p using

the following construction. Starting from G ∈ Λ(n, p)m

representing G ≤ Λ(n, p), G can be viewed as representing

a bilinar map b : Fn
p × F

n
p → F

m
p . Define a group G with

operation ◦ over the set Fm
p × F

n
p as (v1, u1) ◦ (v2, u2) =

(v1 + v2 + 1
2b(u1, u2), u1 + u2). It can be verified that G

is a p-group of class 2 and exponent p, and it is known

that two such groups G1 and G2 built from G1 and G2 are

isomorphic if and only if G1 and G2 are isometric.

When working with groups in the Cayley table model,

and working with ALTMATSPISO in time pO(m+n), the

above reductions can be performed efficiently. In [12], it

is discussed which models of computing with finite groups

admit the reduction from isomorphism testing of p-groups

of class 2 and exponent p to the pseudo-isometry testing of

alternating bilinear maps. In particular, it is concluded there

that the reduction works in the permutation group quotient

model introduced in [27].

2) Relation with the graph isomorphism problem: The

celebrated graph isomorphism problem (GRAPHISO) asks

to decide whether two undirected simple graphs are isomor-

phic. The relation between ALTMATSPISO and GRAPHISO

is very delicate. Roughly speaking, the two time-complexity

measures of ALTMATSPISO, qO(n+m) and poly(n,m, q),
sandwiches GRAPHISO in an interesting way. For one di-

rection, solving ALTMATSPISO in time qO(n+m) can be

reduced to solving GRAPHISO for graphs of size qO(n+m),

by first reducing to solving GROUPISO for groups of order

qO(n+m) as above, and then to solving GRAPHISO for

graphs of size qO(n+m) by the reduction from GROUPISO

to GRAPHISO [30]. Therefore, a polynomial-time algorithm

for GRAPHISO implies an algorithm for ALTMATSPISO in

time qO(n+m). It is then reasonable to examine whether

the recent breakthrough of Babai [2, 3], a quasipolynomial-

time algorithm for GRAPHISO, helps with reducing the time

complexity of ALTMATSPISO. This seems unlikely. One in-

dication is that the brute-force algorithm for ALTMATSPISO

is already quasipolynomial with respect to qO(n+m). An-

other evidence is that Babai in [2, arXiv version 2, Section

13.2] noted that his algorithm seemed not helpful to improve

GROUPISO, and posed GROUPISO as one roadblock for

putting GRAPHISO in P. Since ALTMATSPISO captures the

long-believed bottleneck case for GROUPISO, the current

results for GRAPHISO are unlikely to improve the time

complexity to qO(n+m). There is also an explanation from

the technical viewpoint [19]. Roughly speaking, the barrier

in the group theoretic framework for GRAPHISO is to deal

with large alternating groups, as other composition factors

like projective special linear groups can be handled by

brute-force in quasipolynomial time, so for the purpose of

a quasipolynomial-time algorithm these group are not a

concern. On the other hand, for ALTMATSPISO, it is exactly

the projective special linear groups that form a bottleneck.

For the other direction, in a forthcoming work [22], it is

shown that solving GRAPHISO in polynomial time reduces

to solving ALTMATSPISO over Fq with q = poly(n) in time

poly(n,m, q).
3) Current status of ALTMATSPISO: It is easy to see

that solving ALTMATSPISO in poly(n,m, log q) is in NP∩
coAM, so it is unlikely to be NP-complete. As to the

worst-case time complexity, the brute-force algorithm for

ALTMATSPISO runs in time qn
2 ·poly(n,m, log q). Another

analysed algorithm for ALTMATSPISO offers a running time

of q
1
4 (n+m)2+O(n+m) when q = p > 2 is a prime, by first

reducing to testing isomorphism of class-2 and exponent-p
p-groups of order pn+m, and then applying Rosenbaum’s

N
1
4 logp N+O(1)-time algorithm for p-groups of order N

[44]. This is only better than the brute-force one when

m < n.2 It is somewhat embarrassing that for a problem

in NP∩coAM, we are only able to barely improve over the

brute-force algorithm in a limited range of parameters. In a

very true sense, our current understanding of the worst-case

time complexity of ALTMATSPISO is like the situation for

GRAPHISO in the 1970’s.
On the other hand, practical algorithms for

ALTMATSPISO have been implemented. As far as we

know, current implemented algorithms for ALTMATSPISO

can handle the case when m + n ≈ 20 and p ≈ 13,

but absolutely not the case if m + n ≈ 200, though for

m + n ≈ 200 and say p ≈ 13 the input can be stored in

a few megabytes.3 For GRAPHISO, the programs NAUTY

and TRACES [39] can test isomorphism of graphs stored

in gigabytes in a reasonable amount of time. Therefore,

unlike GRAPHISO, ALTMATSPISO seems hard even in the

practical sense.
4) On the parameters: From the discussion above, we

see that solving ALTMATSPISO with a worst-case time

complexity qO(n+m) seems already a difficult target. From

the meta-postulate, it is helpful to think of vectors in F
n
q as

vertices, and matrices in an m-alternating space as edges,

so the qO(n+m) measure can be thought of as polynomial

in the number of “vertices” and the number of “edges.”

Here the parameter m comes into the theme, because qm,

while no more than q(
n
2), is not necessarily bounded by

a polynomial in qn. This is in contrast to GRAPHISO,

where the edge number is at most quadratic in the vertex

2As pointed out in [12], there are numerous unanalysed algorithms [16,

42] which may lead to some improvement, but qcn
2 · poly(n,m, log q)

for some constant 0 < c < 1 is a reasonable over estimate of the best
bound by today’s method.

3We thank James B. Wilson, who maintains a suite of algorithms for
p-group isomorphism testing, for communicating his hands-on experience
to us. We take the responsibility for any possible misunderstanding or not
knowing of the performance of other implemented algorithms.

465



number. In particular, when m = Ω(n2), then the brute-

force algorithm which runs in qn
2 · poly(m,n, log q) is

already in time qO(n+m). Furthermore, if we consider all

n×n alternating matrix spaces (regardless of the dimension),

most of them are of dimension Ω(n2), so the brute-force

algorithm already works in time qO(n+m) for most alter-

nating matrix spaces. On the other hand, when m is very

small compared to n, say m = O(1), we can enumerate all

elements in GL(m, q) in time qO(1), and apply the isometry

testing for alternating matrix tuples from [24] which runs in

randomised time poly(n,m, log q). Therefore, the qO(n+m)-

time measure makes most sense when m is comparable with

n, in particular when m = Θ(n). This is why we study

average-case algorithms in this regime of parameters (e.g.

LINER(n,m, q) with m = Θ(n)), while the average-case

algorithm for GRAPHISO in [5] considers all graphs (e.g.

each labelled graph is taken with probability 1/2(
n
2)).

C. Algorithmic results

Postulates 1 and 2 seem hopeful at first sight by the

formulations of ALTMATSPISO and LINER. But realities in

the combinatorial world and the linear algebraic world can

be quite different, as just discussed in the last paragraph. So

meaningful results cannot be obtained by adapting the results

for graphs to alternating matrix spaces in a straightforward

fashion. One purpose of this article is to provide evidence

that, despite potential technical difficulties, certain ideas that

have been developed for GRAPHISO and ER can be adapted

to work with ALTMATSPISO and LINER.

We will take a shortcut, by presenting one result that

supports both postulates. In the graph setting, such a result

is naturally an efficient graph isomorphism testing algorithm

with an average-case analysis in the Erdős-Rényi model.

The first such algorithm was proposed by Babai, Erdős

and Selkow in 1970’s [5], with follow-up improvements by

Lipton [34], Karp [28], and Babai and Kučera [6]. Therefore

we set to study average-case algorithms for ALTMATSPISO

in the LINER model. Inspired by the algorithm in [5], we

show the following.

Theorem 1 (Main result). Suppose m = cn for some
constant c. There is an algorithm which, for all but at
most 1/qΩ(n) fraction of alternating matrix spaces G in
LINER(n,m, q), tests any alternating matrix space H for
isometry to G in time qO(n).

An important ingredient in Theorem 1, the utility of

which should go beyond the average-case setting, is an

adaptation of the individualisation technique for GRAPHISO

to ALTMATSPISO. We also realise a reformulation of the

refinement technique for GRAPHISO as used in [5] in the

ALTMATSPISO setting. Individualisation and refinement are

very influential combinatorial ideas for GRAPHISO, have

been crucial in the progress of the worst-case time com-

plexity of GRAPHISO, including Babai’s recent breakthrough

[2, 3], but were missing in the GROUPISO context.

The main contribution of this article to
ALTMATSPISO is to initiate the use of the
individualisation and refinement ideas for
GRAPHISO in this problem.

Here, we note an interesting historical coincidence. Babai

was the first to import the group theoretic idea to GRAPHISO

in 1979 [1], by when the combinatorial techniques had

been around for quite some time. On the other hand, we

have an opposite situation for ALTMATSPISO: the relevant

group theoretic tools have been the subject of intensive study

for decades, while it is the combinatorial individualisation

and refinement ideas that need to be imported. We do

understand though, that there are valid reasons for people

not having come to this before. For example, we would not

have come to such ideas, if we restrict ourselves to solving

ALTMATSPISO in time poly(n,m, log q). In Section IV-A,

we will reflect on the historical development on the worst-

case complexity of GRAPHISO, and discuss the prospect of

getting a qO(n2−ε)-time algorithm for ALTMATSPISO.

For an m-alternating space G in Λ(n, q), define the autom-

etry group of G, Aut(G) as {A ∈ GL(n, q) : AtGA = G}.
The proof of Theorem 1 implies the following, which can

be viewed as a weaker correspondence of the classical result

that most graphs have trivial automorphism groups [17].

Corollary 2. Suppose m = cn for some constant c.
All but 1/qΩ(n) fraction of alternating matrix spaces in
LINER(n,m, q) have autometry groups of size qO(n).

Finally, we provide another piece of evidence to sup-

port Postulate 1, by adapting Luks’ dynamic program-

ming technique for GRAPHISO [38] to ALTMATSPISO. In

the GRAPHISO setting, this technique improves the naive

n! ·poly(n) time bound to the 2O(n) time bound, which can

be understood as replacing the number of permutations n!
with the number of subsets 2n. In the linear algebraic setting

the analogue would be to replace Θ(qn
2

), the number of

invertible matrices over Fq , with the number of subspaces in

F
n
q which is q

1
4n

2+O(n). We show that this is indeed possible.

Theorem 3. There exists a deterministic algorithm for
ALTMATSPISO in time q

1
4 (m

2+n2)+O(m+n).

Note that the quadratic term on the exponent of the

algorithm in Theorem 3 is 1
4 (m

2 + n2), slightly better

than the one based on Rosenbaum’s result [44] which is
1
4 (m + n)2. We stress though that our intention to present

this result is to support Postulate 1.

D. Applications to enumeration of finite p-groups

A basic question in finite group theory is to determine the

number of groups of a given order n (up to isomorphism).

When n is a prime power, this was first studied by G.

Higman in 1960 [23], who showed that the number of p-

groups of order p� is lower bounded by p
2
27 �

3− 4
9 �

2

, by
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consider p-groups of Frattini class 2. (A p-group is of Frattini

class 2 if there exists a central elementary abelian group

such that its quotient is also elementary abelian.) Sims estab-

lished an upper bound p
2
27 �

3+O(�8/3) [46], later improved to

p
2
27 �

3+O(�5/2) by Newman and Seely (see [11, Sec. 5]). We

refer the interested reader to the excellent monograph [11]

for more on this research direction. By the correspondence

between p-groups of class 2 and exponent p and alternating

matrix spaces, Corollary 2, with appropriate choices of

parameters, implies that the number of p-groups of class 2
and exponent p is lower bounded by p

2
27 �

3− 2
9 �

2−O(�). This

already improves Higman’s 57-year-old lower bound. Note

that our lower bound is established by considering p-groups

of class 2 and exponent p, which is a subclass of p-groups

of Frattini class 2.

Theorem 4. The number of p-groups of order p� is lower
bounded by p

2
27 �

3− 2
9 �

2−O(�).

On the other hand, the number of p-groups of class 2 and

exponent p of order � is upper bounded by � ·p 2
27 �

3− 2
9 �

2+ 49
72 �

[11, Theorem 19.3]. Our Theorem 4 then implies that the

coefficient of the quadratic term on the exponent is −2/9
for such p-groups. This answers an open problem in [11],

namely Question 22.8 in the case of this group class. The

proof of Theorem 4 can be viewed as adapting the techniques

from random graph theory to study p-groups. This suggests

that the linear algebraic Erdős-Rényi model may deserve

further study. We will make some general remarks on this

in Section IV-B.
In a follow-up work [32], we will extend our techniques in

two ways to yield stronger results for enumerating p-groups.

The first improvement will be to get the exact coefficient of

the linear term on the exponent. The second improvement

will be to deal with p-groups of Frattini class 2.

Organisation of this extended abstract. In Section II,

we present the outline of the algorithm for Theorem 1.

In Section III, we demonstrate the dynamic programming

idea using the subspace transporter problem, and present

an outline of the proof of Theorem 3. Section IV includes

discussions, future directions, and a review of the relation

between p-group isomorphism testing and alternating matrix

space isometry testing. Due to lack of space, some proofs

have to be omitted from this extended abstract. Details can

be found in the full version of this paper [33].

II. OUTLINE OF THE MAIN ALGORITHM

We now describe the outline of the algorithm for Theo-

rem 1, which is inspired by the first average-case efficient

algorithm for GRAPHISO by Babai, Erdős, and Selkow [5].

We will recall the idea in [5] that is relevant to us, define a

linear algebraic individualisation, and propose a reformula-

tion of the refinement step in [5]. Then we present an outline

of the main algorithm. During the procedure we will also

see how the meta-postulate guides the generalisation here.

A. A variant of the naive refinement algorithm as used in
[5]

Two properties of random graphs are used in the average-

case analysis of the algorithm in [5]. The first property

is that most graphs have the first 
3 logn� largest degrees

distinct. The second property, which is relevant to us, is the

following.

Let G = ([n], E) be a simple undirected graph (the

labeling of vertices are determined corresponding to their

degrees in the decreasing order). Let r = 
3 logn�, and

S = [r], T = [n] \ [r]. Let B be the bipartite graph induced

by the cut [r]∪{r+1, . . . , n}, that is, B = (S∪T, F ) where

F = {(i, j) : i ∈ S, j ∈ T, {i, j} ∈ E}. For each j ∈ T ,

assign a length-r bit string fj as follows: fj ∈ {0, 1}r such

that fj(i) = 1 if and only if (i, j) ∈ F . It is easy to verify

that, all but at most O(1/n) fraction of graphs satisfy that

fj’s are distinct over j ∈ T .

Let us see how the second property alone, together

with the individualisation and refinement heuristic, give an

average-case algorithm in nO(logn). Suppose G satisfies the

second property, and we would like to test isomorphism

between G = ([n], E) and an arbitrary graph H = ([n], E′).
Let StG ⊆ {0, 1}r be the set of bit strings obtained in

the procedure above. Note that |StG| = n − r. In the

individualising step, we enumerate all r-tuple of vertices

in H . For a fixed r-tuple (i1, . . . , ir) ∈ [n]r, we perform

the refinement step, that is, label the remaining vertices in

H according to their adjacency relations with the r-tuple

(i1, . . . , ir) as before, to obtain another set of bit-strings

StH . If StG �= StH we neglect this r-tuple. If StG = StH ,

then form a bijective map between [n] and [n], by mapping j
to ij for j ∈ [r], and the rest according to their labels. Finally

check whether this bijective map induces an isomorphism.

It can be verified easily that the above algorithm is an

nO(logn)-time algorithm that tests isomorphism between G
and H given that G satisfies the required property. In par-

ticular, this implies that for such G, |Aut(G)| ≤ nO(logn).

To recover the algorithm in [5], assuming that the largest r
degrees are distinct, one can canonicalise the choice of the

r-tuples by choosing the one with largest r degrees for both

G and H .

B. Individualisation and refinement in the ALTMATSPISO

setting

We will generalise the above idea to the setting of

ALTMATSPISO. To do this, we first make sense of what

individualisation means in the alternating space setting. We

discuss how the refinement step may be generalised, and

indicate how we follow an alternative formulation of it.

Let G = ([n], E) and H = ([n], E′) be two graphs for

which we want to test isomorphism. Let G,H ≤ Λ(n, q) be

two m-alternating spaces for which we want to test isometry.

As the case in Section II-A, we will look for properties of
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G or G which enable the average-case analysis, and perform

individualisation on H or H side.

For i ∈ [n], ei denotes the ith standard basis vector of

F
n
q . For a vector space V and S ⊆ V , we use 〈S〉 to denote

the linear span of S in V .

Individualisation. In the graph setting, individualising r
vertices in H can be understood as follows. First we fix

a size-r subset L of [n]. Then put an order on the elements

in L. The result is a tuple of distinct vertices (i1, . . . , ir) ∈
[n]r. Enumerating such tuples incurs a multiplicative cost of

at most nr.

In the alternating matrix space setting, it is helpful to think

of vectors in F
n
q as vertices, and matrices in H as edges.

Consider the following procedure. First fix a dimension-

r subspace L of F
n
q . Then choose an ordered basis of

L. The result is a tuple of linearly independent vectors

(v1, . . . , vr), vi ∈ F
n
q , such that L = 〈v1, . . . , vr〉. This

incurs a multiplicative cost of at most qrn. Up to this point,

this is in complete analogy with the graph setting. We may

stop here and say that an r-individualisation amounts to fix

an r-tuple of linearly independent vectors.

We can go a bit further though. As will be clear in

the following, it is beneficial if we also fix a complement

subspace R of L, i.e. R ≤ F
n
q such that L ∩ R = {0}

and 〈L∪R〉 = F
n
q . This adds another multiplicative cost of

qr(n−r), which is the number of complement subspaces of a

fixed dimension-r subspace in F
n
q . In the graph setting, this

step is not necessary, because for any L ⊆ [n] there exists

a unique complement subset R = [n] \ L.

To summarise, by an r-individualisation, we mean choos-

ing a direct sum decomposition F
n
q = L ⊕ R where

dim(L) = r and dim(R) = n− r, together with an ordered

basis (v1, . . . , vr) of L. Enumerating all r-individualisations

incurs a total multiplicative cost of at most q2rn−r2 .

Towards a refinement step as in [5]. In the GRAPHISO

setting, individualising r vertices gives (i1, . . . , ir) ∈ [n]r,

and allows us to focus on isomorphisms that respect this

individualisation, namely those φ ∈ Iso(G,H) such that

φ(j) = ij for j ∈ [r]. There are at most (n − r)!
such isomorphisms. Since r is usually set as a polylog,

just naively trying all such permutations does not help.

Therefore the individualisation is usually accompanied with

a refinement type technique.

Specifically, setting L = {i1, . . . , ir} and R = [n] \ L,

the refinement step as in [5] assigns every v ∈ R a label ac-

cording to its adjacency relation w.r.t. (i1, . . . , ir). This label

in fact represents a subset of L, and an individualisation-

respecting isomorphism has to preserve this adjacency rela-

tion for every v ∈ R. This restriction turns out to be quite

severe for most graphs: as observed in Section II-A, for most

graphs G, the adjacency relations between (1, 2, . . . , r) and

j ∈ [n]\ [r] are completely different over j. For such G and

any individualisation of H , this means that there is at most

one way to extend φ(j) = ij for j ∈ [r] to an isomorphism

between G and H .

In the ALTMATSPISO setting, an r-individualisation also

allows us to focus on isometries that respect the decomposi-

tion L⊕R and the ordered basis (v1, . . . , vr) of L, namely

those φ ∈ Iso(G,H) such that φ(ei) = vi for i ∈ [r], and

φ(〈er+1, . . . , en〉) = R. There are at most q(n−r)2 such

isometries. Since r will be also set to be very small –

in fact a constant here – we also need some refinement

type argument. For u ∈ R, we can record its “adjacency

relation” w.r.t. v = (v1, . . . , vr) as a subspace of L ∼= F
r
q

as follows. For Q ∈ H ≤ Λ(n, q), define Q(v, u) :=
(vt1Qu, . . . , v

t
rQu)

t ∈ F
r
q , and H(v, u) := {Q(v, u) : Q ∈

H} which is a subspace in F
r
q .H(v, u) records the adjacency

relation between (v1, . . . , vr) and u under H. It can be

verified that an individualisation-respecting isometry has to

preserve this adjacency relation. It is tempting to check then

on the G side, where we have the standard individualisation

(e1, . . . , er) and 〈er+1, . . . , en〉, whether for most G’s it is

the case that every v ∈ 〈er+1, . . . , en〉 gets a unique label.

If this is so, then the number of individualisation-respecting

isomorphisms can also be significantly reduced. However,

this cannot be the case when r is small, as there are q(n−r)2

vectors in R but there at at most qr
2

subspaces in F
r
q .

The alert reader will note that, since we are looking for

linear maps from 〈er+1, . . . , en〉 to R, the above counting

argument does not make much sense, as it mostly concerns

setwise maps from 〈er+1, . . . , en〉 to R. It is indeed the

case, and we further note that the map from u ∈ R to

H(v, u) ≤ F
r
q defines a sheaf over the projective space

P(R), so such labels have some nontrivial relation to glue

together to form a sheaf. (See the related concept of ker-

nel sheaves as in [29].) It may be possible to use these

observations to define a reasonable refinement step in the

alternating matrix space setting. In this paper we shall follow

the following reformulation.

A reformulation of the refinement step. To resolve the

above problem, we reformulate the idea in the graph setting

as follows. Recall that on the G side we start with the

standard individualisation [r]∪{r+1, . . . , n} with an order

on [r] as (1, . . . , r), and let S = [r], T = {r + 1, . . . , n}.
This defines the bipartite graph B = (S ∪ T, F ) where the

edge set F is induced from G. For a fixed individualisation

on the H side, which produces L∪R, L = {i1, . . . , ir} ⊆ [n]
with an order on L, this also defines a bipartite graph

C = (L ∪R,F ′) where F ′ is induced from H . A bijective

ψ : T → R is a right-side isomorphism between B and C if

it induces an isomorphism between B and C as bipartite

graphs. Let RIso(B,C) be the set of right-side isomor-

phisms, and let IndIso(G,H) be the set of individualisation-

respecting isomorphisms from G to H w.r.t the above indi-

vidualisations. Note that both RIso(B,C) and IndIso(G,H)
can be embedded to the set of bijective maps between T
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and R. The key observation is that an individualisation-

respecting isomorphism has to be a right-side isomorphism

between B and C, e.g. IndIso(G,H) ⊆ RIso(B,C). Also

note that either |RIso(B,C)| = 0 (e.g. when B and C
are not right-isomorphic), or |RIso(B,C)| = |RAut(B)|
where RAut(B) := RIso(B,B). The refinement step as in

Section II-A achieves two goals. Firstly on the G side, most

G’s have the corresponding B with |RAut(B)| = 1. This

means that |RIso(B,C)| ≤ 1. Secondly, given H with a

fixed individualisation inducing the corresponding bipartite

graph C, there is an efficient procedure to decide whether

B and C are right-isomorphic (by comparing the labels),

and if they do, enumerate all right-isomorphisms (actually

unique).

In the ALTMATSPISO setting, on the G side we start

with the standard individualisation S = 〈e1, . . . , er〉,
T = 〈er+1, . . . , en〉 with the ordered basis (e1, . . . , er)
of S. We can also define a correspondence of the bipar-

tite graph B in this setting, which is the matrix space

B′ = {[e1, . . . , er]tP [er+1, . . . , en] : P ∈ G} ≤ M(r ×
(n − r), q), where [e1, . . . , er] denotes the n × r matrix

listing the column vectors {ei : i = 1, . . . , r}. Note that

[e1, . . . , er]
tP [er+1, . . . , en] is just the upper-right r×(n−r)

submatrix of P . Similarly, the individualisation on the H
side yields L⊕R with an ordered basis of L, (v1, . . . , vr),
vi ∈ F

n
q . Take any basis of R = 〈vr+1, . . . , vn〉. Simi-

larly construct C′ = {[v1, . . . , vr]tQ[vr+1, . . . , vn] : Q ∈
H} ≤ M(r × (n − r), q). A ∈ GL(n − r, q) is a right-

side equivalence between B′ and C′ if B′A := {B′A :
B′ ∈ B′} = C′. Let RIso(B′, C′) be the set of right-

side equivalences between B′ and C′, and IndIso(G,H)
the set of individualisation-respecting isometries between

G and H. Similarly, both RIso(B′, C′) and IndIso(G,H)
can be embedded in the set of invertible linear maps

from T to R (isomorphic to GL(n − r, q)), and we have

IndIso(G,H) ⊆ RIso(B′, C′). Furthermore RIso(B′, C′) is

either empty (e.g. B′ and C′ are not right-side equivalent),

or a coset of RAut(B′) := RIso(B′,B′). So in analogy with

the graph setting, for our purpose the goals become: (1)

for most m-alternating space G ≤ Λ(n, q) with m = cn
for some constant c, setting r to be some constant, we

have |RAut(B′)| ≤ qO(n), and (2) for G’s satisfying (1),

RIso(B′, C′) can be enumerated efficiently.

We are almost ready for the algorithm outline. Alas, there

is still one important ingredient missing. It turns out for

the purpose of (2), we will need to “linearise” RAut(B′)
to allow for the use of efficient linear algebra procedures.

This linearisation is captured by the adjoint algebra concept,

defined below in the algorithm outline. Correspondingly, in

the goals above we will replace RAut(B′) and RIso(B′, C′)
with Adj(B) and Adj(B,C) where B and C will be defined

below as well.

C. Algorithm outline

Suppose we want to test isometry between two m-

alternating spaces G = 〈P1, . . . , Pm〉 and H =
〈Q1, . . . , Qm〉 in Λ(n, q). To ease the presentation in this

subsection we assume r = 4 and m = n− 4.

We first define the property on G for the sake of average-

case analysis. Given those Pk ∈ Λ(n, q) linearly spanning G,

form a 3-tensor G ∈ F
n×n×m
q where G(i, j, k) denotes the

(i, j)th entry of Pk. Let B′ be the upper-right r×(n−r)×m
subtensor of G, with B′k being the corresponding corner in

Pk. B′k’s span the B′ as defined above, so A ∈ RAut(B′) ≤
GL(n− r, q) if and only if there exists D = (di,j)i,j∈[m] ∈
GL(m, q) such that ∀i ∈ [m],

∑
j∈[m] di,jB

′
j = B′iA. It is

more convenient that we flip B′ which is of size r × (n −
r)×m to the B which is of size (n−r)×m×r (Figure 1).

Slicing B along the third index, we obtain an r-tuple of

(n− r)×m matrices (B1, . . . , Br) (Figure 2).

Figure 1. The 3-tensor G, and flipping B′ to get B.

Figure 2. Slicing B.

Define the set of equivalences of B as Aut(B) :=
{(A,D) ∈ GL(n− r, q)×GL(m, q) : ∀i ∈ [r], ABiD

−1 =
Bi}. Note that RAut(B′) is the projection of Aut(B) to

the first component. Now define the adjoint algebra of B
as Adj(B) := {(A,D) ∈ M(n − r, q) ⊕M(m, q) : ∀i ∈
[r], ABi = BiD}. (A,D) ∈M(n−r, q)⊕M(m, q) is called

invertible, if both A and D are invertible. Clearly, Aut(B)
consists of the invertible elements in Adj(B). When r = 4,

m = n−r = n−4, it can be shown that the adjoint algebra

of 4 random matrices in M(m, q) is of size qO(m) with

probability 1 − 1/qΩ(m). The key to prove this statement

is the stable notion from geometric invariant theory [41] in

the context of the left-right action of GL(m, q)×GL(m, q)
on matrix tuples M(m, q)r. In this context, a matrix tuple

(B1, . . . , Br) ∈ M(m, q)r is stable, if for every nontrivial

subspace U ≤ F
n
q , dim(〈∪i∈[r]Bi(U)〉) > dim(U). An

upper bound on |Adj(B)| can be obtained by analysing this

notion using some classical algebraic results and elementary

probability calculations. The good property we impose on
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G is then that the corresponding |Adj(B)| ≤ qO(m). It

can be verified that this property does not depend on the

choices of bases of G. There is one subtle point though:

the analysis on Adj(B) is done for 4 random matrices but

we want an analysis for G in the linear algebraic Erdős-

Rényi model. This can be fixed by defining a so-called

naive model and analysing the relation between the naive

model and the LINER model. Roughly speaking, the naive

model is a probability distribution on m-tuples of n × n
alternating matrices, where each upper triangular entry of

each alternating matrix is chosen from Fq in uniform random

independently.

We have achieved our first goal, namely defining a good

property satisfied by most G’s. Let us see how this prop-

erty enables an algorithm for such G’s. For an arbitrary

H ≤ Λ(n, q), at a multiplicative cost of qO(n) (recall that

r = 4) we can enumerate all r-individualisations. Consider a

fixed one, say F
n
q = L⊕R with an ordered basis (v1, . . . , vr)

of L. Analogous to the above, we can construct C′, flip to get

C, and slice C into r (n−r)×m The task then becomes to

compute Adj(B,C) := {(A,D) ∈M(n−r, q)⊕M(m, q) :
∀i ∈ [r], ABi = CiD}. Viewing A and D as variable

matrices, ABi = CiD are linear equations on A and D, so

the solution set can be computed efficiently. As |Adj(B)| ≤
qO(m), for Adj(B,C) to contain an invertible element, it

must be that |Adj(B,C)| = |Adj(B)| ≤ qO(m). In this

case all elements in Adj(B,C) can be enumerated in time

qO(m) = qO(n). For each element (A,D) ∈ Adj(B,C),
test whether it is invertible, and if so, test whether the

A in that solution induces an isometry together with the

individualisation. This completes a high-level description of

the algorithm. In particular, this implies that if G satisfies this

property, then |Aut(G)| ≤ qO(n). A detailed presentation is

in the full version [33], which have some minor differences

with the outline here, as we want to reduce some technical

details.

III. DYNAMIC PROGRAMMING

In this section, given a matrix group G ≤ GL(n, q), we

view G as a permutation group on the domain F
n
q , so basic

tasks like membership testing and pointwise transporter can

be solved in time qO(n) by permutation group algorithms.

Furthermore a generating set of G of size qO(n) can also be

obtained in time qO(n). These algorithms are classical and

can be found in [36, 45].

As mentioned in Section I, for GRAPHISO, Luks’ dynamic

programming technique [38] can improve the brute-force n!·
poly(n) time bound to the 2O(n) time bound, which can be

understood as replacing the number of permutations n! with

the number of subsets 2n.

In our view, Luks’ dynamic programming technique is

most transparent when working with the subset transporter

problem. Given a permutation group P ≤ Sn and S, T ⊆ [n]
of size k, this technique gives a 2k ·poly(n)-time algorithm

to compute PS→T := {σ ∈ P : σ(S) = T} [8]. To

illustrate the idea in the matrix group setting, we start with

the subspace transporter problem.

Problem 3 (Subspace transporter problem). Let G ≤
GL(n, q) be given by a set of generators, and let V , W
be two subspaces of F

n
q of dimension k. The subspace

transporter problem asks to compute the coset GV→W =
{g ∈ G : g(V ) =W}.

The subspace transporter problem admits the following

brute-force algorithm. Fix a basis (v1, . . . , vk) of V , and

enumerate all ordered basis of W at the multiplicative cost

of qk
2

. For each ordered basis (w1, . . . , wk) of W , compute

the coset {g ∈ G : ∀i ∈ [k], g(vi) = wi} by using

a sequence of pointwise stabiliser algorithms. This gives

an algorithm running in time qk
2+O(n). Analogous to the

permutation group setting, we aim to replace O(qk
2

), the

number of ordered basis of Fk
q , with q

1
4k

2+O(k), the number

of subspaces in F
k
q , via a dynamic programming technique.

For this we first observe the following.

Observation 5. There exists a deterministic algorithm that
enumerates all subspaces of F

n
q , and for each subspace

computes an ordered basis, in time q
1
4n

2+O(n).

Proof: For d ∈ {0, 1, . . . , n}, let Sd be the number of

dimension-d subspaces of Fn
q . The total number of subspaces

in F
n
q is S0 + S1 + · · · + Sn = q

1
4n

2+O(n). To enumerate

all subspaces we proceed by induction on the dimension in

an increasing order. The case d = 0 is trivial. For d ≥ 1,

suppose all subspaces of dimension d − 1, each with an

ordered basis, are listed. To list all subspaces of dimension

d, for each dimension-(d− 1) subspace U ′ with an ordered

basis (u1, . . . , ud−1), for each vector ud �∈ U ′, form U with

the ordered basis (u1, . . . , ud). Then test whether U has been

listed. If so discard it, and if not add U together with this

ordered basis to the list. The two for loops as above adds a

multiplicative factor of at most Sd−1 ·qn, and other steps are

basic linear algebra tasks. Therefore the total complexity is∑n
i=0 Si · qO(n) = q

1
4n

2+O(n).

Theorem 6. There exists a deterministic algorithm that
solves the subspace transporter problem in time q

1
4k

2+O(n).

Proof: We fix an ordered basis (v1, . . . , vk) of V ,

and for d ∈ [k], let Vd = 〈v1, . . . , vd〉. The dynamic

programming table is a list, indexed by subspaces U ≤W .

For U ≤ W of dimension d ∈ [k], the corresponding cell

will store the coset G(Vd → U) = {g ∈ G : g(Vd) = U}.
When d = k the corresponding cell gives G(V →W ).

We fill in the dynamic programming table according to d
in an increasing order. For d = 0 the problem is trivial. Now
assume that for some d ≥ 1, we have computed G(Vl → U ′)
for all 0 ≤ l ≤ d − 1 and subspace U ′ ≤ W of dimension
U . To compute G(Vd → U) for some fixed U ≤ W of
dimension d, note that any g ∈ G(Vd → U) has to map
Vd−1 to some (d− 1)-dimension subspace U ′ ≤ U , and vd
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to some vector u ∈ U \ U0. This shows that

G(Vd → U) =
⋃

U′≤U,dim(U′)=d−1

⋃

u∈U\U′
[G(Vd−1 → U ′)](vd → u).

To compute [G(Vd−1 → U ′)](vd → u), we read G(Vd−1 →
U ′) from the table, then compute [G(Vd−1 → U ′)](vd →
u) using the pointwise transporter algorithm. The number

of u in U \ U ′ is no more than qd, and the number of

(d− 1)-dimension subspaces of U is also no more than qd.

After taking these two unions, apply Sims’ method to get

a generating set of size qO(n). Therefore for each cell the

time complexity is q2d · qO(n) = qO(n). Therefore the whole

dynamic programming table can be filled in time q
1
4k

2+O(k) ·
qO(n) = q

1
4k

2+O(n).

The proof of Theorem 6 contains the essential idea of how

to use dynamic programming in this setting. We will apply

this idea in a more sophisticated way to prove Theorem 3.

The first step is to deal with the following problem.

Problem 4 (Alternating matrix transporter problem). Let

H ≤ GL(n, q) be given by a set of generators, and let

A,B ∈ Λ(n, q) be two alternating matrices. The alternat-

ing matrix transporter problem asks to compute the coset

HA→B = {g ∈ H : gtAg = B}.
Theorem 7. There exists a deterministic algorithm that
solves the alternating matrix transporter problem in time
q

1
4n

2+O(n).

Theorem 7 is proved using the dynamic programming

idea. Details can be found in [33]. Given Theorem 7, we

are ready to prove Theorem 3.

Proof: Let (e1, . . . , em) be the standard basis of F
m
q ,

and let Ek = 〈e1, . . . , ek〉. v = (a1, . . . , am)t ∈ F
m
q ,

define Hv :=
∑

i∈[m] aiHi ∈ Λ(n, q). For a dimension-

k subspace V ≤ F
m
q with an ordered basis (v1, . . . , vk),

HV := (Hv1 , . . . ,Hvk) ∈ Λ(n, q)k.

The dynamic programming table is indexed by subspaces

of Fm
q , so the number of cells is no more than q

1
4m

2+O(m).

The cell corresponding to a dimension-k subspace V stores

the coset

{(g, h) ∈ GL(n, q)×GL(k, q) : gt(GEk)g = (HV )h} (1)

which is denoted by Iso(GEk ,HV ).

We will fill in the dynamic programming table in the in-

creasing order of the dimension d. Recall that each subspace

also comes with an ordered basis by Observation 5. The

base case d = 0 is trivial. Now assume we have computed

Iso(GE� ,HV ) for all 1 ≤ � ≤ d− 1 and V ≤ F
n
q of dimen-

sion �. To compute Iso(GEd ,HV ) for V ≤ F
n
q of dimension

d, note that any h in (g, h) ∈ Iso(GEd ,HV ) satisfies the

following. Firstly, h sends Ed−1 to some dimension-(d− 1)
subspace V ′ ≤ V , and (g, h) ∈ Iso(GEd−1 ,HV ′). Secondly,

h sends ek to some v ∈ V \ V ′, and g sends Ged to Hv .

This shows that

Iso(GEd ,HV ) =
⋃

V ′≤V,dim(V ′)=d−1

⋃

v∈V \V ′
Iso′(V ′, v),

where

Iso′(V ′, v) =
[
[Iso(GEd−1 ,HV ′)](ed → v)

]
(Ged → Hv).

To compute Iso′(V ′, v), Iso(GEd−1 ,HV ′) can be read from

the table. [Iso(GEd−1 ,HV ′)](ed → v) is an instance of

the pointwise transporter problem of GL(n, q) × GL(k, q)
acting on F

m
q , which can be solved in time qO(m). Finally[

[Iso(GEd−1 ,HV ′)](ed → v)
]
(Ged → Hv) is an instance

of the alternating matrix transporter problem, which can

be solved, by Theorem 7, in time q
1
4n

2+O(n). Going over

the two unions adds a multiplicative factor of q2d, and

then we apply Sims’ method to reduce the generating set

size to qO(n). Therefore for each cell the time complex-

ity is q2d · q 1
4n

2+O(n+m) = q
1
4n

2+O(m+n). Therefore the

whole dynamic programming table can be filled in in time

q
1
4m

2+O(m) · q 1
4n

2+O(n+m) = q
1
4 (n

2+m2)+O(n+m).

IV. DISCUSSIONS AND FUTURE DIRECTIONS

A. Discussion on the prospect of worst-case time complexity
of ALTMATSPISO

While our main result is an average-case algorithm, we

believe that the ideas therein suggest that an algorithm for

ALTMATSPISO in time qO(n2−ε) may be within reach.

For this, we briefly recall some fragments of the history of

GRAPHISO, with a focus on the worst-case time complexity

aspect. Two (families of) algorithmic ideas have been most

responsible for the worst-case time complexity improve-

ments for GRAPHISO. The first idea, which we call the com-

binatorial idea, is to use certain combinatorial techniques

including individualisation, vertex or edge refinement, and

more generally the Weisfeiler-Leman refinement [48]. The

second idea, which we call the group theoretic idea, is

to reduce GRAPHISO to certain problems in permutation

group algorithms, and then settle those problems using group

theoretic techniques and structures. A major breakthrough

utilising the group theoretic idea is the polynomial-time

algorithm for graphs with bounded degree by Luks [35].

Some combinatorial techniques have been implemented

and used in practice [39], though the worst-case analysis

usually does not favour such algorithms (see e.g. [14]).

On the other hand, while group theoretic algorithms for

GRAPHISO more than often come with a rigorous analysis,

such algorithms usually only work with a restricted family of

graphs (see e.g. [35]). The major improvements on the worst-

case time complexity of GRAPHISO almost always rely on

both ideas. The recent breakthrough, a quasipolynomial-time

algorithm for GRAPHISO by Babai [2, 3], is a clear evidence.

Even the previous record, a 2Õ(
√
n)-time algorithm by Babai

and Luks [7], relies on both Luks’ group theoretic framework
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[35] and Zemlyachenko’s combinatorial partitioning lemma

[51].

Let us return to ALTMATSPISO. It is clear that

ALTMATSPISO can be studied in the context of matrix

groups over finite fields. Computing with finite matrix

groups though, turns out to be much more difficult than

working with permutation groups. The basic constructive

membership testing task subsumes the discrete log problem,

and even with a number-theoretic oracle, a randomised

polynomial-time algorithm for constructive membership test-

ing was only recently obtained by Babai, Beals and Seress

[4] for odd q. However, if a qO(n+m)-time algorithm for

ALTMATSPISO is the main concern, then we can view

GL(n, q) acting on the domain F
n
q of size qn, so basic tasks

like constructive membership testing are not a bottleneck. In

addition, a group theoretic framework for matrix groups in

vein of the corresponding permutation group results in [35]

has also been developed by Luks [37]. Therefore, if we aim

at a qO(n+m)-time algorithm for ALTMATSPISO, the group

theoretic aspect is relatively developed.

Despite all the results on the group theoretic aspect,

as described in Section I-B, a qO(n+m)-time algorithm

for ALTMATSPISO has been widely regarded to be very

difficult, as such an algorithm would imply an algorithm

that tests isomorphism of p-groups of class 2 and exponent

p in time polynomial in the group order. Reflecting back on

how the time complexity of GRAPHISO has been improved,

we realised that the other major idea, namely the com-

binatorial refinement idea, seemed missing in the context

of ALTMATSPISO. By adapting the individualisation tech-

nique, developing an alternative route to the refinement step

as used in [5], and demonstrating its usefulness in the linear

algebraic Erdős-Rényi model, we believe that this opens the

door to systematically examine and adapt such combinatorial

refinement techniques for GRAPHISO to improve the worst-

case time complexity of ALTMATSPISO. We mention one

possibility here. In [43], a notion of degree for alternating

matrix spaces will be introduced, and it will be interesting

to combine that degree notion with Luks’ group theoretic

framework for matrix groups [37] to see whether one can

obtain a qO(n+m)-time algorithm to test isometry of alternat-

ing matrix spaces with bounded degrees. If this is feasible,

then one can try to develop a version of Zemlyachenko’s

combinatorial partition lemma for ALTMATSPISO in the

hope to obtain a moderately exponential-time algorithm (e.g.

in time qO(n2−ε)) for ALTMATSPISO.

B. Discussion: on the linear algebraic Erdős-Rényi model

As far as we are aware, the linear algebraic Erdős-Rényi

model (Model 1) has not been discussed in the literature. We

believe that this model may lead to some interesting mathe-

matics. In this section we put some general remarks on this

model. We will consider LINER(n,m, q), or the correspond-

ing bipartite version of LINER, BIPLINER(n × n,m, q),

which is the uniform distribution over all m-dimensional

subspaces of M(n, q).
To start with, it seems to us reasonable to consider an

event E as happening with high probability only when

Pr[E] ≥ 1 − 1/qΩ(n). To illustrate the reason, con-

sider BIPLINER(n × n,m, q) with the following property

E(n,m, q). For a dimension-m B ≤ M(n, q), B satisfies

E(n,m, q) if and only if for every U ≤ F
n
q , dim(B(U)) ≥

dim(U). This corresponds to the concept of semi-stable as

in the geometric invariant theory; compare with the stable

concept as described in Section II-C. One can think of B
being semi-stable as having a perfect matching [20, 25, 26].

When m = 1, B = 〈B〉 is semi-stable if and only if B is

invertible, so 1− 1
q ≥ Pr[E(n, 1, q)] ≥ 1− 1

q−1 . On the other

hand when m = 4, since stable implies semi-stable, from

Section II-C we have Pr[E(n, 4, q)] ≥ 1− 1
qΩ(n) . So though

E(n, 1, q) happens with some nontrivial probability, it seems

not fair to consider E(n, 1, q) happens with high probability,

while E(n, 4, q) should be thought of as happening with

high probability.
The above example suggests that the phenomenon in the

linear algebraic Erdős-Rényi model can be different from its

classical correspondence. Recall that in the classical Erdős-

Rényi model, an important discovery is that most properties

E have a threshold mE . That is, when the edge number m is

slightly less than mE , then E almost surely does not happen.

On the other hand, if m surpasses mE slightly then E almost

surely happens. mE is usually a nonconstant function of the

vertex number, as few interesting things can happen when

we have only a constant number of edges. However, the

above example about the semi-stable property suggests that,

if there is a threshold for this property, then this threshold has

to be between 1 and 4, as we have seen the transition from

1− 1/qO(1) to 1− 1/qΩ(n) when m goes from 1 to 4. This

is not surprising though, as one “edge” in the linear setting

is one matrix, which seems much more powerful than an

edge in a graph. It should be possible to pin down the exact

threshold for the semi-stable property, and we conjecture

that the transition (from 1−1/qO(1) to 1−1/qΩ(n)) happens

from 2 to 3 as this is where the transition from tame to wild

as in the representation theory [10, Chapter 4.4] happens

for the representations of the Kronecker quivers. This hints

on one research direction on LINER, that is, to determine

whether the threshold phenomenon happens with monotone

properties.
The research on LINER has to depend on whether there

are enough interesting properties of matrix spaces. We men-

tion two properties that originate from existing literature;

more properties can be found in the forthcoming paper [43].

Let G be an m-alternating space in Λ(n, q). For U ≤ F
n
q of

dimension d with an ordered basis (v1, . . . , vd), the restric-

tion of G to U is defined as {[v1, . . . , vd]tG[v1, . . . , vd] :
G ∈ G} which is an alternating space in Λ(d, q). The first

property is the following. Let s(G) be the smallest number
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for the existence of a dimension-s subspace U such that

the restriction of G to U is of dimension m. This notion

is one key to the upper bound on the number of p-groups

[11, 46]. It is interesting to study the asymptotic behavior

of s(G). The second property is the following. Call U ≤ F
n
q

an independent subspace, if the restriction of G to U is the

zero space. We can define the independent number of G
accordingly. This mimics the independent sets for graphs,

and seems to relate to the independent number concept for

non-commutative graphs which are used to model quantum

channels [15]. Again, it is interesting to study the asymptotic

behavior of the independent number.

Finally, as suggested in [15] (where they consider Hermi-

tian matrix spaces over C), the model may be studied over

infinite fields, where we replace “with high probability” with

“generic” as in the algebraic geometry sense.
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[25] Gábor Ivanyos, Youming Qiao, and K. V. Subrah-

manyam. Non-commutative Edmonds’ problem and

matrix semi-invariants. Computational Complexity,

pages 1–47, 2016.

[26] Gábor Ivanyos, Youming Qiao, and K. V. Subrah-

manyam. Constructive non-commutative rank is in

deterministic polynomial time. In the 8th Innovations
in Theoretical Computer Science (ITCS), 2017.

[27] William M. Kantor and Eugene M. Luks. Computing

in quotient groups. In Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, May 13-
17, 1990, Baltimore, Maryland, USA, pages 524–534,

1990.

[28] Richard M. Karp. Probabilistic analysis of a canonical

numbering algorithm for graphs. In Proceedings of
the AMS Symposium in Pure Mathematics, volume 34,

pages 365–378, 1979.

[29] Dmitry Kerner and Victor Vinnikov. Determinantal rep-

resentations of singular hypersurfaces in pn. Advances
in Mathematics, 231(3):1619–1654, 2012.

[30] Johannes Köbler, Uwe Schöning, and Jacobo Torán.
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