A Dichotomy for Regular Expression Membership Testing

Karl Bringmann
Max Planck Institute for Informatics
Saarbrücken Informatics Campus
Saarbrücken, Germany
Email: kbringma@mpi-inf.mpg.de

Allan Grønlund†
Computer Science
Aarhus University,
Aarhus, Denmark
Email: jallan@cs.au.dk

Kasper Green Larsen†
Computer Science
Aarhus University
Aarhus, Denmark
Email: larsen@cs.au.dk

Abstract—We study regular expression membership testing: Given a regular expression of size m and a string of size n, decide whether the string is in the language described by the regular expression. Its classic $O(nm)$ algorithm is one of the big success stories of the 70s, which allowed pattern matching to develop into the standard tool that it is today.

Many special cases of pattern matching have been studied that can be solved faster than in quadratic time. However, a systematic study of tractable cases was made possible only recently, with the first conditional lower bounds reported by Backurs and Indyk [FOCS’16]. Restricted to any “type” of homogeneous regular expressions of depth 2 or 3, they either presented a near-linear time algorithm or a quadratic conditional lower bound, with one exception known as the Word Break problem.

In this paper we complete their work as follows:

- We present two almost-linear time algorithms that generalize all known almost-linear time algorithms for special cases of regular expression membership testing.
- We classify all types, except for the Word Break problem, into almost-linear time or quadratic time assuming the Strong Exponential Time Hypothesis. This extends the classification from depth 2 and 3 to any constant depth.
- For the Word Break problem we give an improved $O(nm^{3/3} + m)$ algorithm. Surprisingly, we also prove a matching conditional lower bound for combinatorial algorithms. This establishes Word Break as the only intermediate problem.

In total, we prove matching upper and lower bounds for any type of bounded-depth homogeneous regular expressions, which yields a full dichotomy for regular expression membership testing.

Keywords—regular expressions; pattern matching; algorithms; computational complexity; conditional hardness; improved upper bounds;

I. INTRODUCTION

A regular expression is a term involving an alphabet Σ and the operations concatenation \circ, union \cup, Kleene’s star \ast, and Kleene’s plus $+$, see Section II. In regular expression membership testing, we are given a regular expression R and a string s and want to decide whether s is in the language described by R. In regular expression pattern matching, we instead want to decide whether any substring of s is in the language described by R. A big success story of the 70s was to show that both problems have $O(nm)$ time algorithms [1], where n is the length of the string s and m is the size of R. This quite efficient running time, coupled with the great expressiveness of regular expressions, made pattern matching the standard tool that it is today.

Despite the efficient running time of $O(nm)$, it would be desirable to have even faster algorithms. A large body of work in the pattern matching community was devoted to this goal, improving the running time by logarithmic factors [2], [3] and even to near-linear for certain special cases [4], [5], [6].

A systematic study of the complexity of various special cases of pattern matching and membership testing was made possible by the recent advances in the field of conditional lower bounds, where tight running time lower bounds are obtained via fine-grained reductions from certain core problems like satisfiability, all-pairs-shortest-paths, or 3SUM (see, e.g., [7], [8], [9], [10]). Many of these conditional lower bounds are based on the Strong Exponential Time Hypothesis (SETH) [11] which asserts that k-satisfiability has no $O(2^{(1-\varepsilon)n})$ time algorithm for any $\varepsilon > 0$ and all $k \geq 3$.

The first conditional lower bounds for pattern matching problems were presented by Backurs and Indyk [12]. Viewing a regular expression as a tree where the inner nodes are labeled by \circ, \ast, $+$, and the leaves are labeled by alphabet symbols, they call a regular expression homogeneous of type $t \in \{\circ, \ast, +\}^d$ if in each level i of the tree all inner nodes have type t_i, and the depth of the tree is at most d. Note that leaves may appear in any level, and the degrees are unbounded. This gives rise to natural restrictions t-pattern matching and t-membership, where we require the regular expression to be homogeneous of type t. The main result of Backurs and Indyk [12] is a characterization of t-pattern matching for all types t of depth $d \leq 3$: For each such problem they either design a near-linear time algorithm or show a quadratic lower bound based on SETH. We observed that the results by Backurs and Indyk actually even yield a classification for all t, not only for depth $d \leq 3$. This is not explicitly stated in [12],
so for completeness we prove it in this paper, see the full version [13]. This closes the case for t-pattern matching.

For t-membership, Backurs and Indyk also prove a classification into near-linear time and “SETH-hard” for depth $d \leq 3$, with the only exception being $|\circ|$-membership. The latter problem is also known as the Word Break problem, since it can be rephrased as follows: Given a string s and a dictionary D, can s be split into words contained in D? Indeed, a regular expression of type \circ represents a string, so a regular expression of type $|\circ$ represents a dictionary, and type $+|\circ$ then asks whether a given string can be split into dictionary words. Word Break is a well known interview and programming competition question [14] and a simplified version of a word segmentation problem from Natural Language Processing [15]. A relatively easy algorithm solves the Word Break problem in randomized time $\tilde{O}(n m^{1/2} + m)$, which Backurs and Indyk improved to randomized time $\tilde{O}(n m^{1/2-1/18} + m)$. Thus, the Word Break problem is the only studied special case of membership testing (or pattern matching) for which no near-linear time algorithm or quadratic time hardness is known. In particular, no other special case is “intermediate”, i.e., in between near-linear and quadratic running time. Besides the status of Word Break, Backurs and Indyk also leave open a classification for $d > 3$.

A. Our Results

In this paper, we complete the dichotomy started by Backurs and Indyk [12] to a full dichotomy for any depth d. In particular, we (conditionally) establish Word Break as the only intermediate problem for (bounded-depth homogeneous) regular expression membership testing. More precisely, our results are as follows.

Word Break Problem: We carefully study the only depth-3 problem left unclassified by Backurs and Indyk. Here we improve Backurs and Indyk’s $\tilde{O}(n m^{1/2-1/18} + m)$ randomized algorithm to a deterministic $\tilde{O}(n m^{1/3} + m)$ algorithm.

Theorem 1. The Word Break problem can be solved in time $O(n (m \log m)^{1/3} + m)$.

We remark that often running times of the form $\tilde{O}(n^{\sqrt{\delta}})$ stem from a tradeoff of two approaches to a problem. Analogously, our time $\tilde{O}(n m^{1/3} + m)$ stems from trading off three approaches. Moreover, our algorithm uses Fast Fourier Transform to efficiently compute Boolean convolutions by multiplication of big numbers.

Very surprisingly, we also prove a matching conditional lower bound. Our result only holds for combinatorial algorithms, which is a notion without agreed upon definition, intuitively meaning that we forbid impractical algorithms such as fast matrix multiplication. We use the following hypothesis. Recall that the k-Clique problem has a trivial $O(n^k)$ time algorithm, an $O(n^k/\lg^k n)$ combinatorial algorithm [16], and all known faster algorithms use fast matrix multiplication [17, 18].

Conjecture 1. For all $k \geq 3$, any combinatorial algorithm for k-Clique takes time $n^{k-o(1)}$.

In a conditional lower bound for context-free grammar parsing, Abboud et al. [19] recently used a similar hypothesis, which we prove to be equivalent to Conjecture 1. See the full version [13]. We provide a (combinatorial) reduction from k-Clique to the Word Break problem showing:

Theorem 2. Assuming Conjecture 1, the Word Break problem has no combinatorial algorithm in time $(nm^{1/3-\varepsilon} + m)$ for any $\varepsilon > 0$.

This is a surprising result for multiple reasons. First, $nm^{1/3}$ is a very uncommon time complexity, specifically we are not aware of any other problem where the fastest known algorithm has this running time. Second, it shows that the Word Break problem is an intermediate problem for t-membership, as it is neither solvable in almost-linear time nor does it need quadratic time. Our results below show that the Word Break problem is, in fact, the only intermediate problem for t-membership, which is quite fascinating.

As mentioned, our new upper bound relies on the Fast Fourier Transform and may be considered as not combinatorial. On the other hand, while fast matrix multiplication is often considered impractical, Fast Fourier Transform and Boolean convolution have very efficient implementations. In other words, restricted to algorithms avoiding fast matrix multiplication our bounds are tight. We leave it as an open problem to prove a matching lower bound without the assumptions of “combinatorial” or “avoiding fast matrix multiplication”.

Related to this question, note that the currently fastest algorithm for 4-Clique is based on fast rectangular matrix multiplication and runs in time $O(n^{3.256689})$ [18, 20]. If this bound is close to optimal, then we can still establish Word Break as an intermediate problem (without any restriction to combinatorial algorithms).

Theorem 3. For any $\delta > 0$, if 4-Clique has no $O(n^{3+\delta})$ algorithm, then Word Break has no $O(n^{1+\delta/3})$ algorithm for $n = m$.

We remark that this situation of having matching conditional lower bounds only for combinatorial algorithms is not uncommon, see, e.g., Sliding Window Hamming Distance [21].

New Almost-Linear Time Algorithms: We establish two more types for which the membership problem is in almost-linear time.

Theorem 4. There is a deterministic $\tilde{O}(n) + O(m)$ algorithm for $| + \circ +$-membership and an expected time...
Theorem 5. For types $| \circ +$, $| \circ |$, and $| + \circ |$ membership takes time $(nm)^{1-o(1)}$ unless SETH fails.

Due to lack of space these proofs can only be found in the full version [13].

Dichotomy: We complement the classification for t-membership started by Backurs and Indyk for $d \leq 3$ to give a complete dichotomy for all types t. To this end, we first establish the following simplification rules.

Lemma 1. For any type t, applying any of the following rules yields a type t' such that t'-membership and t-membership are equivalent under linear-time reductions:

1) replace any substring pp, for any $p \in \{ \circ, |, +, \}$, by p;
2) replace any substring $+|+ by $+$;
3) replace prefix $r*$ by $r+$ for any $r \in \{ +, | \}^*$.

We say that t-membership simplifies if one of these rules applies. Applying these rules in any order will eventually lead to an unsimplifiable type.

We show the following dichotomy. Note that we do not have to consider simplifying types, as they are equivalent to some unsimplifiable type.

Theorem 6. For any $t \in \{ \circ, |, +, \}^*$ one of the following holds:

- t-membership simplifies,
- t is a subsequence of $| + \circ +$ or $| + \circ |$, and thus t-membership is in almost-linear time (by Theorem 4),
- $t = +|\circ$, and thus t-membership is the Word Break problem taking time $(nm)^{1/3+o(1)}$ (by Theorems 1 and 2, assuming Conjecture 1), or
- t-membership takes time $(nm)^{1-o(1)}$, assuming SETH.

This yields a complete dichotomy for any constant depth d. We discussed the algorithmic results and the algorithm for Word Break before. Regarding the hardness results, Backurs and Indyk [12] gave SETH-hardness proofs for t-membership on types $\circ|\circ$, $\circ|\circ+\circ$, and $|+\circ|$. We provide further SETH-hardness for types $\circ|\circ+$, $+|\circ|$, and $|+\circ|$. To get from these (hard) core types to all remaining hard types, we would like to argue that all hard types contain one of the core types as a subsequence and thus are at least as hard. However, arguing about subsequences fails in general, since the definition of “homogeneous with type t'” does not allow to leave out layers. This makes it necessary to proceed in a more ad-hoc way.

In summary, we provide matching upper and lower bounds for any type of bounded-depth homogeneous regular expressions, which yields a full dichotomy for the membership problem.

II. Preliminaries

A regular expression is a tree with leaves labelled by symbols in an alphabet Σ and inner nodes labelled by \circ (at least one child), $|$ (at least one child), $+$ (exactly one child), or \ast (exactly one child). The size of a regular expression is the number of tree nodes, and its depth is the length of the longest root-to-leaf path. The language described by a regular expression is recursively defined as follows. A leaf v labelled by $c \in \Sigma$ describes the language $L(v) := \{c\}$, consisting of one word of length 1. Consider an inner node v with children v_1, \ldots, v_t. If v is labelled by \circ then it describes the language $\{s_1 \cdots s_k \mid s_1 \in L(v_1), \ldots, s_k \in L(v_t)\}$, i.e., all concatenations of strings in the children’s languages. If v is labelled by $|$ then it describes the language $L(v) := \{s_1 \cdots s_k \mid k \geq 1 \text{ and } s_1, \ldots, s_k \in L(v_1)\}$, and if v is labelled \ast then the same statement holds with “$k \geq 1$” replaced by “$k \geq 0$”. We say that a string s matches a regular expression R if s is in the language described by R.

We use the following definition given in [12]. We let $\{ \circ, |, +, \}^*$ be the set of all finite sequences over $\{ \circ, |, +, \}$: we also call this the set of types. For any $t \in \{ \circ, |, +, \}^*$ we denote its length by $|t|$ and its i-th entry by t_i. We say that a regular expression is homogeneous of type t if it has depth at most $|t|+1$ (i.e., any inner node has level in $\{1, \ldots, |t|\}$), and for any i, any inner node in level i is labelled by t_i. We also say that the type of any inner node at level i is t_i. This does not restrict the appearance of leaves in any level.

Definition 1. A linear-time reduction from t-membership to t'-membership is an algorithm that, given a regular expression R of type t and length m and a string s of length n, in total time $O(n + m)$ outputs a regular expression R' of type t' and size $O(m)$, and a string s' of length $O(n)$ such that s matches R if and only if s' matches R'.

The Strong Exponential Time Hypothesis (SETH) was introduced by Impagliazzo, Paturi, and Zane [22] and is defined as follows.

1All our algorithms work in the general case where \circ and $|$ may have degree 1. For the conditional lower bounds, it may be unnatural to allow degree 1 for these operations. If we restrict to degrees at least 2, it is possible to adapt our proofs to prove the same results, but this is tedious and we think that the required changes would be obscuring the overall point.
Conjecture 2. For no $\varepsilon > 0$, k-SAT on N variables can be solved in time $O(2^{(1-\varepsilon)N})$ for all $k \geq 3$.

Very often it is easier to show SETH-hardness based on the intermediate problem Orthogonal Vectors (OV): Given two sets of d-dimensional vectors $A, B \subseteq \{0, 1\}^d$ with $|A| = |B| = n$, determine if there exist vectors $a \in A, b \in B$ such that $\sum_{i=1}^{d} a[i] \cdot b[i] = 0$. The following OV-conjecture follows from SETH [23].

Conjecture 3. For any $\varepsilon > 0$ there is no algorithm for OV that runs in time $O(n^{2-\varepsilon}\text{poly}(d))$.

To start off the proof for the dichotomy, we have the following hardness results from [12].

Theorem 7. For any type t among o, o, $o + o$, $o + \delta$, and $o + \delta$, any algorithm for t-membership takes time $(nm)^{1-o(1)}$ unless SETH fails.

III. CONDITIONAL LOWER BOUND FOR WORD BREAK

In this section we prove our conditional lower bounds for the Word Break problem, Theorems 2 and 3. Both theorems follow from the following reduction.

Theorem 8. For any $k \geq 4$, given a k-Clique instance on n vertices, we can construct an equivalent Word Break instance on a string of length $O(n^{k-1})$ and a dictionary D of total size $|D| = \sum_{d \in D} |d| = O(n^3)$. The reduction is combinatorial and runs in linear time in the output size.

First let us see why this implies Theorems 2 and 3.

Proof of Theorem 2: Suppose for the sake of contradiction that Word Break can be solved combinatorially in time $O(nnm^{1/3-\varepsilon} + m)$. Then our reduction yields a combinatorial algorithm for k-Clique in time $O(n^{k-1} \cdot (n^3)^{1/3-\varepsilon}) = O(n^{k-3\varepsilon})$, contradicting Conjecture 1.

Proof of Theorem 3: Assuming that 4-Clique has no $O(n^{3+\delta})$ algorithm for some $\delta > 0$, we want to show that Word Break has no $O(n^{1+\delta/3})$ algorithm for $n = m$.

Setting $k = D$ in the above reduction yields a string and a dictionary, both of size $O(n^3)$ (which can be padded to the same size). Thus, an $O(n^{1+\delta/3})$ algorithm for Word Break with $n = m$ would yield an $O(n^{3+\delta})$ algorithm for 4-Clique, contradicting the assumption.

It remains to prove Theorem 8. Let $G = (V, E)$ be an n-node graph on which we want to determine whether there is a k-clique. The main idea of our reduction is to construct a gadget that for any $(k-2)$-clique $S \subseteq V$ can determine whether there are two nodes $u, v \in V \setminus S$ such that $(u, v) \in E$ and both u and v are connected to all nodes in S, i.e., $S \cup \{u, v\}$ forms a k-clique in G. For intuition, we first present a simplified version of our gadgets and then show how to modify them to obtain the final reduction.

Simplified Neighborhood Gadget: Given a $(k-2)$-clique S, the purpose of our first gadget is to test whether there is a node $u \in V$ that is connected to all nodes in S. Assume the nodes in V are denoted v_1, \ldots, v_n. The alphabet Σ over which we construct strings has a symbol i for each v_i. Furthermore, we assume Σ has special symbols # and $. The simplified neighborhood gadget for $S = \{v_1, \ldots, v_{k-2}\}$ has the text T being

$123 \cdots n\#i_1\#123 \cdots n\#i_2\#123 \cdots \#i_{k-2}\#123 \cdots n\$

and the dictionary D contains for every edge $(v_i, v_j) \in E$, the string:

$i(i + 1) \cdots n\#j\#123 \cdots (i - 2)(i - 1)$

and for every node v_i, the two strings

$123 \cdots (i - 2)(i - 1) \ i(i + 1) \cdots n\$

The idea of the above construction is as follows: Assume we want to break T into words. The crucial observation is that to match T using D, we have to start with $123 \cdots (i - 2)(i - 1)$ for some node v_i. The only way we can possibly match the following part $i(i + 1) \cdots n\#i_1\#i_2\#i_3\# \cdots$ is if D has the string $i(i + 1) \cdots n\#i_1\#i_2\#(i - 2)(i - 1)$. But this is the case if only if $(v_i, v_{i_1}) \in E$, i.e., v_i is a neighbor of v_{i_1}. If indeed this is the case, we have now matched the prefix $\#i_1\#i_2\#(i - 2)(i - 1)$ of the next block. This means that we can still only use strings starting with $i(i + 1) \cdots$ from D. Repeating this argument for all $v_i \in S$, we conclude that we can break T into words from D if and only if there is some node v_i that is a neighbor of every node $v_i \in S$.

Simplified k-Clique Gadget: With our neighborhood gadget in mind, we now describe the main ideas of our gadget that for a given $(k-2)$-clique S can test whether there are two nodes v_i, v_j such that $(v_i, v_j) \in E$ and v_i and v_j are both connected to all nodes of S, i.e., $S \cup \{v_i, v_j\}$ forms a k-clique.

Let T_S denote the text used in the neighborhood gadget for S, i.e.,

$123 \cdots n\#i_1\#123 \cdots n\#i_2\#123 \cdots \#i_{k-2}\#123 \cdots n$

Our k-clique gadget for S has the following text T:

$T_S \gamma T_S$

where γ is a special symbol in Σ. The dictionary D has the strings mentioned in the neighborhood gadget, as well as the string

$i(i + 1) \cdots n\# \gamma \#123 \cdots (j - 1)$

for every edge $(v_i, v_j) \in E$. The idea of this gadget is as follows: Assume we want to break T into words. We have to start using the dictionary string $123 \cdots (i - 1)$ for some node v_i. For such a candidate node v_i, we can match the prefix

$123 \cdots n\#i_1\#123 \cdots n\#i_2\#123 \cdots n\# \cdots n\#i_{k-2}\#$
of $T_S \gamma T_S$ if and only if v_i is a neighbor of every node in S. Furthermore, the only way to match this prefix (if we start with $123 \cdots (i-1)$) covers precisely the part:

$123 \cdots n# i_1#123 \cdots n# i_2 \cdots # i_{k-2}#123 \cdots (i-2)(i-1)$

Thus if we want to also match the γ, we can only use strings

$i(i+1) \cdots n# \gamma 123 \cdots (j-1)$

for an edge $(v_i,v_j) \in E$. Finally, by the second neighborhood gadget, we can match the whole string $T_S \gamma T_S$ if and only if there are some nodes v_i,v_j such that v_i is a neighbor of every node in S (we can match the first T_S), and $(v_i,v_j) \in E$ (we can match the γ) and v_j is a neighbor of every node in S (we can match the second T_S), i.e., $S \cup \{v_i,v_j\}$ forms a k-clique.

Combining it all: The above gadget allows us to test for a given $(k-2)$-clique S whether there are some two nodes v_i,v_j we can add to S to get a k-clique. Thus, our next step is to find a way to combine such gadgets for all the $(k-2)$-cliques in the input graph. The challenge is to compute an OR over all of them, i.e. testing whether at least one can be extended to a k-clique. For this, our idea is to replace every symbol in the above constructions with 3 symbols and then carefully concatenate the gadgets. When we start matching the string T against the dictionary, we are matching against the first symbol of the first $(k-2)$-clique gadget, i.e. we start at an offset of zero. We want to add strings to the dictionary that always allow us to match a clique gadget if we have an offset of zero. These strings will then leave us at offset zero in the next gadget. Next, we will add a string that allows us to change from offset zero to offset one. We will then ensure that if we have an offset of one when starting to match a $(k-2)$-clique gadget, we can only match it if that clique can be extended to a k-clique. If so, we ensure that we will start at an offset of two in the next gadget. Next, we will also add strings to the dictionary that allow us to match any gadget if we start at an offset of two, and these strings will ensure we continue to have an offset of two. Finally, we append symbols at the end of the text that can only be matched if we have an offset of two after matching the last gadget. To summarize: Any breaking of T into words will start by using an offset of zero and simply skipping over $(k-2)$-cliques that cannot be extended to a k-clique. Then once a proper $(k-2)$-clique is found, a string of the dictionary is used to change the start offset from zero to one. Finally, the clique is matched and leaves us at an offset of two, after which the remaining string is matched while maintaining the offset of two.

We now give the final details of the reduction. Let $G = (V,E)$ be the n-node input graph to k-clique. We do as follows:

1) Start by iterating over every set of $(k-2)$ nodes S in G. For each such set of nodes, test whether they form a $(k-2)$-clique in $O(k^2)$ time. Add each found $(k-2)$-clique S to a list L.

2) Let $\alpha, \beta, \gamma, \mu, \#$ and $\#$ be special symbols in the alphabet. For a string $T = t_1 t_2 \cdots t_m$, let

$[T]^{(0)}_{\alpha,\beta} = \alpha t_1 \beta t_2 \beta \cdots t_m \beta$

and

$[T]^{(1)}_{\alpha,\beta} = t_1 \beta t_2 \beta t_3 \beta \cdots t_m \beta$

For each node $v_i \in V$, add the following two strings to the dictionary D:

$[123 \cdots (i-2)(i-1)]^{(1)}_{\alpha,\beta} \ [i(i+1) \cdots n]^{(1)}_{\alpha,\beta}$

3) For each edge $(v_i,v_j) \in E$, add the following two strings to the dictionary:

$[i(i+1) \cdots n#j123 \cdots (i-2)(i-1)]^{(1)}_{\alpha,\beta}$

and

$[i(i+1) \cdots n# \gamma123 \cdots (j-1)]^{(1)}_{\alpha,\beta}$

4) For each symbol σ amongst $\{1, \ldots, n, $, $\#, \gamma, \mu\}$, add the following two string to D:

$\alpha \sigma \beta \ \beta \sigma$

Intuitively, the first of these strings is used for skipping a gadget if we have an offset of zero, and the second is used for skipping a gadget if we have an offset of two.

5) Also add the three strings

$\alpha \mu \beta \alpha \ \$ \beta \alpha \mu \ \beta \mu \mu$

to the dictionary. The first is intuitively used for changing from an offset of zero to an offset of one (begin matching a clique gadget), the second is used for changing from an offset of one to an offset of two in case a clique gadget could be matched, and the last string is used for matching the end of T if an offset of two has been achieved.

6) We are finally ready to describe the text T. For a $(k-2)$-clique $S = \{v_1, \ldots, v_{k-2}\}$, let T_S be the neighborhood gadget from above, i.e.

$123 \cdots n# i_1#123 \cdots n# i_2 \cdots # i_{k-2}#123 \cdots n$

For each $S \in L$ (in some arbitrary order), we append the string:

$[\mu T_S \gamma T_S \mu]^{(0)}_{\alpha,\beta}$

to the text T. Finally, once all these strings have been appended, append another two μ’s to T. That is, the text T is:

$T := (\omega_{S \in L} [\mu T_S \gamma T_S \mu]^{(0)}_{\alpha,\beta}) \mu \mu$

We want to show that the text T can be broken into words from the dictionary D iff there is a k-clique in the input.
Let S' be an arbitrary subset of $k - 2$ nodes from S. Since these form a $(k - 2)$-clique, it follows that T has the substring $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_a$. To match T using D, do as follows: For each S'' preceding S' in L, keep using the strings $\alpha \beta \gamma$ from step 4 above to match. This allows us to match everything preceding $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$ in T. Then use the string $\alpha \beta \gamma$ to match the beginning of $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$. Now let v_i and v_j be the two nodes in $S \setminus S'$. Use the string $[\mu T_S \gamma T_S \mu_{1, \alpha}]_{a, \beta}$ to match the next part of $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$. Then since S is a k-clique, we have the string $[i(i + 1) \cdots n \# h = 123 \cdots (j - 2)(j - 1)]_{a, \beta}$ in the dictionary for every v_h in S'. Use these strings for each v_h in S'. Again, since S is a k-clique, we also have the edge $(v_i, v_j) \in E$. Thus we can use the string $[i(i + 1) \cdots n \# \gamma 123 \cdots (j - 1)]_{a, \beta}$ to match the γ in $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$. We then repeat the argument for v_j and repeatedly use the strings $[j(j + 1) \cdots n \# h = 123 \cdots (j - 2)(j - 1)]_{a, \beta}$ to match the second $T_{S'}$. We finish by using the string $[j(j + 1) \cdots n]_{a, \beta}$ followed by using $\beta \gamma \alpha \mu$. We are now at an offset where we can repeatedly use $\beta \gamma \alpha \mu$ to match across all remaining $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$. Finally, we can finish the match by using $\beta \gamma \alpha \mu$ after the last substring $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$.

For the other direction, assume it is possible to break T into words from D. By construction, the last word used has to be $\beta \gamma \alpha \mu$. Now follow the matching backwards until a string not of the form $\beta \gamma \alpha \mu$ was used. This must happen eventually since T starts with α. We are now at a position in T where the suffix can be matched by repeatedly using $\beta \gamma \alpha \mu$, and then ending with $\beta \gamma \alpha \mu$. By construction, T has $\alpha \sigma$ just before this suffix for some $\sigma \in \{1, \ldots, n, \# \}$, γ, μ. The only string in D that could match this without being of the form $\beta \gamma \alpha \mu$ is the one string $\beta \gamma \alpha \mu$. It follows that we must be at the end of some substring $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$ and used $\beta \gamma \alpha \mu$ for matching the last μ. To match the preceding μ in the last $T_{S'}$, we must have used a string $[j(j + 1) \cdots n]_{a, \beta}$ for some v_j. The only strings that can be used preceding this are strings of the form $[j(j + 1) \cdots n \# h = 123 \cdots (j - 2)(j - 1)]_{a, \beta}$. Since we have matched T, it follows that (v_j, v_h) is in E for every $v_h \in S'$. Having traced back the match across the last $T_{S'}$ in $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$, let v_i be the node such that the string $[i(i + 1) \cdots n \# \gamma 123 \cdots (j - 1)]_{a, \beta}$ was used to match the γ. It follows that we must have $(v_i, v_j) \in E$. Tracing the matching through the first $T_{S'}$ in $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$, we conclude that we must also have $(v_i, v_h) \in E$ for every $v_h \in S'$. This establishes that $S' \cup \{v_i, v_j\}$ forms a k-clique in G.

Finishing the proof: From the input graph G, we constructed the Word Break instance in time $O(n^{k-2}2^k)$ plus the time needed to output the text and the dictionary. For every edge $(v_i, v_j) \in E$, we added two strings to D, both of length $O(n)$. Furthermore, D had two $O(n)$ length strings for each node $v_i \in V$ and another $O(n)$ strings of constant length. Thus the total length of the strings in D is $M = O(|E| n + n) = O(n^3)$. The text T has the substring $[\mu T_S' \gamma T_S' \mu_{1, \alpha}]_{a, \beta}$ for every $(k - 2)$-clique S. Thus T has length $N = O(n^{k-1})$ (assuming k is constant). The entire reduction takes $O(n^{k-1} + n^3)$ time for constant k. This finishes the reduction and proves Theorem 8.

IV. Algorithm for Word Break

In this section we present an $\tilde{O}(nm^{1/3} + m)$ algorithm for the Word Break problem, proving Theorem 1. Our algorithm uses many ideas of the randomized $O(nm^{1/2 - 1/18} + m)$ algorithm by Backurs and Indyk [12], in fact, it can be seen as a cleaner execution of their main ideas. Recall that in the Word Break Problem we are given a set of strings $D = \{d_1, \ldots, d_k\}$ (the dictionary) and a string s (the text) and we want to decide whether s can be (D)-partitioned, i.e., whether we can write $s = s_1 \cdots s_r$ such that $s_i \in D$ for all i. We denote the length of s by n and the total size of D by $m := ||D|| := \sum_i |d_i|$.

We say that we can (D)-jump from j to i if the substring $s[j + 1..i]$ is in D. Note that if $s[1..i]$ can be partitioned and we can jump from j to i then also $s[1..i]$ can be partitioned. Moreover, $s[1..i]$ can be partitioned if and only if there exists $0 \leq j < i$ such that $s[1..j]$ can be partitioned and we can jump from j to i. For any power of two $q \geq 1$, we let $D_q := \{d \in D \mid q \leq |d| < 2q\}$.

In the algorithm we want to compute the set T of all indices i such that $s[1..i]$ can be partitioned (where $0 \in T$, since the empty string can be partitioned). The trivial $O(nm)$ algorithm computes $T \cap \{0, \ldots, i\}$ one by one, by checking for each i whether for some string d in the dictionary we have $s[i - |d| + 1..i] = d$ and $i - |d| \in T$, since then we can extend the existing partitioning of $s[1..i - |d|]$ by the string d to a partitioning of s.

In our algorithm, when we have computed the set $T \cap \{0, \ldots, x\}$, we want to compute all possible “jumps” from a point before x to a point after x using dictionary words with length in $[q, 2q)$ (for any power of two q). This gives rise to the following query problem.

Lemma 2. On dictionary D and string s, consider the following queries:

- **Jump-Query:** Given a power of two $q \geq 1$, an index x in s, and a set $S \subseteq \{x - 2q + 1, \ldots, x\}$, compute the set of all $x < i \leq x + 2q$ such that we can D_q-jump from some $j \in S$ to i.

We can preprocess D, s in time $O(n \log m + m)$ such that queries of the above form can be answered in time $O(\min\{q^2, \sqrt{qm \log q}\})$, where m is the total size of D and $n = |s|$.
Before we prove that jump-queries can be answered in the claimed running time, let us show that this implies an $O(nm^{1/3} + m)$-time algorithm for the Word Break problem.

Proof of Theorem 1: The algorithm works as follows. After initializing $T := \{0\}$, we iterate over $x = 0, \ldots, n-1$. For any x, and any power of two $q \leq n$ dividing x, define $S := T \cap \{x - 2q + 1, \ldots, x\}$. Solve a jump-query on (q, x, S) to obtain a set $R \subseteq \{x + 1 \ldots x + 2q\}$, and set $T := T \cup R$.

To show correctness of the resulting set T, we have to show that $i \in \{0, \ldots, n\}$ is in T if and only if $s[1..i]$ can be partitioned. Note that whenever we add i to T then $s[1..i]$ can be partitioned, since this only happens when there is a jump to i from some $j \in T$, $j < i$, which inductively yields a partitioning of $s[1..i]$. For the other direction, we have to show that whenever $s[1..i]$ can be partitioned then we eventually add i to T. This is trivially true for the empty string ($i = 0$). For any $i > 0$ such that $s[1..i]$ can be partitioned, consider any $0 \leq j < i$ such that $s[1..j]$ can be partitioned and we can jump from j to i. Round down $i - j$ to a power of two q, and consider any multiple x of q with $j \leq x < i$. Inductively, we therefore have $j \in T$. Moreover, this holds already in iteration x, since after this time we only add indices larger than x to T. Consider the jump-query for q, x, and $S := T \cap \{x - 2q + 1, \ldots, x\}$ in the above algorithm. In this query, we have $j \in S$ and we can jump from j to i, so by correctness of Lemma 2 the returned set R contains i. Hence, we add i to T, and correctness follows.

For the running time, since there are $O(n/q)$ multiples of $1 \leq q \leq n$ in $\{0, \ldots, n-1\}$, there are $O(n/q)$ invocations of the query algorithm with power of two $q \leq n$. Thus, the total time of all queries is up to constant factors bounded by $\sum_{i=0}^{\log n} n \cdot \min\left\{2^i, \sqrt{mlog(2^i)}\right\} = n \cdot \sum_{\ell=0}^{\log n} \min\left\{2^\ell, \sqrt{m\ell/2^{\ell}}\right\}$. We split the sum at a point ℓ^* where $2^{\ell^*} = \Theta((mlog m)^{1/3})$ and use the first term for smaller ℓ and the second for larger. Using $\sum_{\ell=0}^{\ell^*} 2^\ell = O(2^{\ell^*})$ and $\sum_{\ell=\ell^*}^{\log n} \sqrt{\ell/2^{\ell}} = O(\sqrt{\log n}/2^{\ell^*})$, we obtain the upper bound $\leq n \cdot \sum_{\ell=0}^{\ell^*} 2^\ell + n \cdot \sum_{\ell=\ell^*+1}^{\log n} \sqrt{m\ell/2^{\ell}} = O\left(n2^{\ell^*} + n\sqrt{m\ell^*/2^{\ell^*}}\right) = O\left(n(mlog m)^{1/3}\right)$, since $\ell^* = O((log m)$ by choice of $2^{\ell^*} = \Theta((mlog m)^{1/3})$. Together with the preprocessing time $O(nlog m + m)$ of Lemma 2, we obtain the desired running time $O(n(mlog m)^{1/3} + m)$.

It remains to design an algorithm for jump-queries. We present two methods, one with query time $O(q^2)$ and one with query time $O(\sqrt{qmlog q})$. The combined algorithm, where we first run the preprocessing of both methods, and then for each query run the method with the better guarantee on the query time, proves Lemma 2.

A. Jump-Queries in Time $O(q^2)$

Lemma 3. Given a set of strings D', in time $O(||D'||)$ one can build a data structure allowing the following queries. Given a string s' of length n', we compute the set Z of all substrings of s' that are contained in D', in time $O(n' + |Z|) \leq O(n'^2)$.

With this lemma, we design an algorithm for jump-queries as follows. In the preprocessing, we simply build the data structure of the above lemma for each D_q, in total time $O(m)$.

For a jump-query (q, x, S), we run the query on the above lemma on the substring $s[x - 2q + 1..x + 2q]$ of s. This yields all pairs (j, i), $x - 2q < j < i \leq x + 2q$, such that we can D_q-jump from j to i. Iterating over these pairs and checking whether $j \in S$ gives a simple algorithm for solving the jump-query. The running time is $O(q^2)$, since the query of Lemma 3 runs in time quadratic in the length of the substring $s[x - 2q + 1..x + 2q]$.

B. Jump-Queries in Time $O(\sqrt{qmlog q})$

The second algorithm for jump-queries is more involved. Note that if $q > m$ then $D_q = \emptyset$ and the jump-query is trivial. Hence, we may assume $q \leq m$, in addition to $q \leq n$.

Preprocessing: We denote the reverse of a string d by d^rev, and let $D_q^{rev} := \{d^{rev} \mid d \in D_q\}$. We build a trie T_q for each D_q^{rev}. Recall that a trie on a set of strings is a rooted tree with each edge labeled by an alphabet symbol, such that if we orient edges away from the root then no node has two outgoing edges with the same label. We say that a node v in the trie spells the word that is formed by concatenating all symbols on the path from the root to v. The set of strings spelled by the nodes in T_q is exactly the set of all prefixes of strings in D_q^{rev}. Finally, we say that the nodes spelling strings in D_q^{rev} are marked. We further annotate the trie T_q by storing for each node v the lowest marked ancestor m_v.

In the preprocessing we also run the algorithm of the following lemma.

Lemma 4. The following problem can be solved in total time $O(nlog m + m)$. For each power of two $q \leq \min\{n, m\}$ and each index i in string s, compute the minimal $j = j(i)$ such that $s[j..i]$ is a suffix of a string in D_q. Furthermore, compute the node $v(q, i)$ in T_q spelling the string $s[j(i)..i]^{rev}$.

Note that the second part of the problem is well-defined: T_q stores the reversed strings D_q^{rev}, so for each suffix x of a string in D_q there is a node in T_q spelling x^{rev}.

Proof: First note that the problem decomposes over q. Indeed, if we solve the problem for each q in time $O(||D_q|| + n)$, then over all q the total time is $O((m + nlog m))$, as the D_q partition D and there are $O((log m)$ powers of two $q \leq m$.

Thus, fix a power of two $q \leq \min\{n, m\}$. It is natural to reverse all involved strings, i.e., we instead want to compute for each i the maximal j such that $s^{rev}[i..j]$ is a prefix of a string in D_q^{rev}.

313
Recall that a suffix tree is a compressed trie containing all suffixes of a given string \(s' \). In particular, “compressed” means that if the trie would contain a path of degree 1 nodes, labeled by the symbols of a substring \(s'[i..j] \), then this path is replaced by an edge, which is succinctly labeled by the pair \((i, j)\). We call each node of the uncompressed trie a \textit{position} in the compressed trie, in other words, a position in a compressed trie is either one of its nodes or a pair \((e, k)\), where \(e \) is one of the edges, labeled by \((i, j)\), and \(i < k < j \). A position \(p \) is an \textit{ancestor} of a position \(p' \) if the corresponding nodes in the uncompressed tries have this relation, i.e., if we can reach \(p \) from \(p' \) by going up the uncompressed trie. It is well-known that suffix trees have linear size and can be computed in linear time [24]. In particular, iterating over all \textit{nodes} of a suffix tree takes linear time, while iterating over all \textit{positions} can take up to quadratic time (as each of the \(n \) suffixes may give rise to \(\Omega(n) \) positions on average).

We compute a suffix tree \(S \) of \(s^{rev} \). Now we determine for each node \(v \) in \(T_q \) the position \(p_v \) in \(S \) spelling the same string as \(v \), if it exists. This task is easily solved by simultaneously traversing \(T_q \) and \(S \), for each edge in \(T_q \) making a corresponding move in \(S \), if possible. During this procedure, we store for each node in \(S \) the corresponding node in \(T_q \), if it exists. Moreover, for each edge \(e \) in \(S \) we store (if it exists) the pair \((v, k)\), where \(k \) is the lowest position \((e, k)\) corresponding to some node in \(T_q \), and \(v \) is the corresponding node in \(T_q \). Note that this procedure runs in time \(O(|D_q|) \), as we can charge all operations to nodes in \(T_q \).

Since \(S \) is a suffix tree of \(s^{rev} \), each leaf \(u \) of \(S \) corresponds to some suffix \(s^{rev}[i..n] \) of \(s^{rev} \). With the above annotations of \(S \), iterating over all nodes in \(S \) we can determine for each leaf \(u \) the lowest ancestor position \(p \) of \(u \) corresponding to some node \(v \) in \(T_q \). It is easy to see that the string spelled by \(v \) is the longest prefix shared by \(s^{rev}[i..n] \) and any string in \(D_q^{rev} \). In other words, denoting by \(\ell \) the length of the string spelled by \(v \) (which is the depth of \(v \) in \(T_q \)), the index \(j := i + \ell - 1 \) is maximal such that \(s^{rev}[i..j] \) is a prefix of a string in \(D_q^{rev} \). Undoing the reversing, \(j' := n + 1 - j \) is minimal such that \(s[j'..n + 1 - i] \) is a suffix of a string in \(D_q \). Hence, setting \(v(q, n + 1 - i) := v \) solves the problem.

This second part of this algorithm performs one iteration over all nodes in \(S \), taking time \(O(n) \), while we charged the first part to the nodes in \(T_q \), taking time linear in the size of \(D_q \). In total over all \(q \), we thus obtain the desired running time \(O(n \log m + m) \).

For each \(T_q \), we also compute a maximal packing of paths with many marked nodes, as is made precise in the following lemma. Recall that in the trie \(T' \) for dictionary \(D' \) the marked nodes are the ones spelling the strings in \(D' \).

\textbf{Lemma 5.} \textit{Given any trie \(T \) and a parameter \(\lambda \), a \(\lambda \)-packing is a family \(B \) of pairwise disjoint subsets of \(V(T) \) such that (1) each \(B \in B \) is a directed path in \(T \), i.e., it is a path from some node \(r_B \) to some descendant \(v_B \) of \(r_B \), (2) \(r_B \) and \(v_B \) are marked for any \(B \in B \), and (3) each \(B \in B \) contains exactly \(\lambda \) marked nodes.}

\textit{In time} \(O(|V(T)|) \) \textit{we can compute a maximal (i.e., non-extendable) \(\lambda \)-packing.}

\textbf{Proof:} We initialize \(B = \emptyset \). We perform a depth first search on \(T \), remembering the number \(\ell_v \) of marked nodes on the path from the root to the current node \(v \). When \(v \) is a leaf and \(\ell_v < \lambda \), then \(v \) is not contained in any directed path containing \(\lambda \) marked nodes, so we can backtrack. When we reach a node \(v \) with \(\ell_v = \lambda \), then from the path from the root to \(v \) we delete the (possibly empty) prefix of unmarked nodes to obtain a new set \(B \) that we add to \(B \). Then we restart the algorithm on all unvisited subtrees of the path from the root to \(v \). Correctness is immediate.

For any power of two \(q \leq \min\{n, m\} \), we set \(\lambda_q := \left(\frac{m}{q} \log q\right)^{1/2} \) and compute a \(\lambda_q \)-packing \(B_q \) of \(T_q \), in total time \(O(m) \). In \(T_q \), we annotate the highest node \(r_B \) of each path \(B \in B \) as being the root of \(B \). This concludes the preprocessing.

\textbf{Query Algorithm:} Consider a jump-query \((q, x, S)\) as in Lemma 2. For any \(B \in B \) let \(d_B^{rev} \) be the string spelled by the root \(r_B \) of \(B \) in \(T_q \), and let \(\pi_B = (u_1, \ldots, u_k) \) be the path from the root of \(T \) to the root \(r_B \) of \(B \) (note that the labels of \(\pi_B \) form \(d_B^{rev} \)). We set \(S_B := \{1 \leq i \leq k \mid u_i \text{ is marked}\} \), which is the set containing the length of any prefix of \(d_B^{rev} \) (corresponding to a suffix of \(d_B \)) that is contained in \(D_q^{rev} \), as the marked nodes in \(T_q \) correspond to the strings in \(D_q^{rev} \).

As the first part of the query algorithm, we compute the sunsets \(S + S_B := \{i + j \mid i \in S, j \in S_B\} \) for all \(B \in B \).

Now consider any \(x < i \leq x + 2q \). By the preprocessing (Lemma 4), we know the minimal \(j \) such that \(s[j..i] \) is a suffix of some \(d \in D_q \), and we know the node \(v := v(q, i) \) in \(T_q \) spelling \(s[j..i]^{rev} \). The path \(\sigma \) from the root to \(v \) in \(T_q \) spells the reverse of \(s[j..i] \). It follows that the strings \(d \in D_q \) such that \(s[i - |d| + 1..i] = d \) correspond to the marked nodes on \(\sigma \). To solve the jump-query (for \(i \)) it would thus be sufficient to check for each marked node \(u \) on \(\sigma \) whether for the depth \(j \) of \(u \) we have \(i - j \in S \), as then we can \(D_q \)-jump from \(i - j \) to \(j \) and have \(i - j \in S \). Note that we can efficiently enumerate the marked nodes on \(\sigma \), since each node in \(T_q \) is annotated with its lowest marked ancestor. However, there may be up to \(\Omega(q) \) marked nodes on \(\sigma \), so this method would again result in running time \(\Theta(q) \) for each \(i \), or \(\Theta(q^2) \) in total.

Hence, we change this procedure as follows. Starting in \(v = v(q, i) \), we repeatedly go the lowest marked ancestor and check whether it gives rise to a partitioning of \(s[1..i] \), until we reach the root \(r_B \) of some \(B \in B \). Note that by maximality of \(B \) we can visit less than \(\lambda_q \) marked ancestors.
since we meet any node of some \(B \in B \), and it takes less than \(\lambda_q \) more steps to lowest marked ancestors to reach the root \(r_B \). Thus, this part of the query algorithm takes time \(O(\lambda_q) \). Observe that the remainder of the path \(\sigma \) equals \(\pi_B \).

We thus can make use of the sumset \(S + S_B \) as follows. The sumset \(S + S_B \) contains \(i \) if and only if for some \(1 \leq j \leq |\pi_B| \) we have \(i - j \in S \) and we can \(D_q \)-jump from \(i - j \) to \(i \). Hence, we simply need to check whether \(i \in S + S_B \) to finish the jump-query for \(i \).

Running Time: As argued above, the second part of the query algorithm takes time \(O(\lambda_q) \) for each \(i \), which yields \(O(q \cdot \lambda_q) \) in total.

For the first part of computing the sumsets, first note that \(D_q \) contains at most \(m/q \) strings, since its total size is at most \(m \) and each string has length at least \(q \). Thus, the total number of marked nodes in \(T_q \) is at most \(m/q \). As each \(B \in B \) contains exactly \(\lambda_q \) marked nodes, we have

\[
|B| \leq m/(q \cdot \lambda_q). \tag{1}
\]

For each \(B \in B \) we compute a sumset \(S + S_B \). Note that \(S \) and \(S_B \) both live in universes of size \(O(q) \), since \(S \subseteq \{x - 2q + 1, \ldots, x\} \) by definition of jump-queries, and all strings in \(D_q \) have length less than \(2q \) and thus \(|S_B| \subseteq \{1, \ldots, 2q\} \). After translation, we can even assume that \(S, S_B \subseteq \{1, \ldots, O(q)\} \). It is well-known that computing the sumset of \(X, Y \subseteq \{1, \ldots, U\} \) is equivalent to computing the Boolean convolution of their indicator vectors of length \(U \). The latter in turn can be reduced to multiplication of \(O(U \log U) \)-bit numbers, by padding every bit of an indicator vector with \(O(\log U) \) zero bits and concatenating all padded bits. Since multiplication is in linear time on the Word RAM, this yields an \(O(U \log U) \) algorithm for sumset computation. Hence, performing a sumset computation \(S + S_B \) can be performed in time \(O(q \log q) \). Over all \(B \in B \), we obtain a running time of \(O(|B| \cdot q \log q) = O((m \log m)/\lambda_q) \), by the bound (1).

Summing up both parts of the query algorithm yields running time \(O(q \cdot \lambda_q + (m \log m)/\lambda_q) \). Note that our choice of \(\lambda_q = (m \frac{1}{q} \log q)^{1/2} \) minimizes this time bound and yields the desired query time \(O(\sqrt{m} \log q) \). This finishes the proof of Lemma 2.

V. ALMOST-LINEAR TIME ALGORITHMS

In this section we prove the second part of Theorem 4, i.e. we present our expected \(n^{1+o(1)} + O(m) \) time algorithm for \(|+\sigma|-membership. Due to lack of space, our \(O(n) + O(m) \) time algorithm for \(|+\sigma+|-membership can be found only in the full version [13].

A. Almost-linear Time for \(|+\sigma|

For a given length-\(n \) string \(T \) and length-\(m \) regular expression \(R \) of type \(|+\sigma|\), let \(R_1, \ldots, R_k \) denote the regular expressions of type \(\sigma \) such that \(R = R_1^* | R_2^* | \ldots | R_k^* \sigma_1 \cdots \sigma_j \). Here the \(\sigma_j \)'s are characters from \(\Sigma \) (recall that in the definition of homogenous regular expressions we allow leaves in any depth, so we can have the single characters \(\sigma_i \) in \(R \)). Since the \(\sigma_i \)'s are trivial to handle, we ignore them in the remainder.

For convenience, we index the characters of \(T \) by \(T[0], \ldots, T[n-1] \). For \(R \) to match \(T \), it must be the case that \(R_i^+ \) matches \(T \) for some index \(i \). Letting \(\ell_i \) be the number of \(\sigma_i \)'s in \(R_i \), we define \(S_{i,j} \subseteq \Sigma \) for \(j = 0, \ldots, \ell_i \) as the set of characters from \(\Sigma \) such that

\[
R_i = (|\sigma_i \in S_{i,j}| \circ |\sigma_i \in S_{i,j+1}| \cdots \circ |\sigma_i \in S_{i,\ell_i}|).
\]

Note that if a leaf appears in the \(| \cdot \)-level, then the set \(S_{i,j} \) is simply a singleton set.

We observe that \(T \) matches \(R_i^\dagger \) iff \((\ell_i + 1) \) divides \(|T| = n \) and \(T[j] \in S_{i,j} \mod(\ell_i+1) \) for all \(j = 0, \ldots, n-1 \). In other words, if \((\ell_i + 1) \) divides \(n \) and we define sets \(T_{i,j}^\dagger \subseteq \Sigma \) for \(j = 0, \ldots, \ell_i \), such that

\[
T_{i,j}^\dagger = \frac{n}{(\ell_i + 1)} - \frac{1}{\ell_i + 1} \sum_{h=0}^{\ell_i} T[h(\ell_i + 1) + j],
\]

then we see that \(T \) matches \(R_i^\dagger \) iff \(T_j \subseteq S_{i,j} \) for \(j = 0, \ldots, \ell_i \). Note that the sets \(T_{i,j}^\dagger \) depend only on \(T \) and \(\ell_i \), i.e. the number of \(\sigma_i \)'s in \(R_i \). We therefore start by partitioning the expressions \(R_i \) into groups having the same number of \(\sigma_i \)'s \(\ell_i \). This takes time \(O(m) \). We can immediately discard all groups where \((\ell_i + 1) \) does not divide \(n \). The crucial property we will use is that an integer \(n \) can have no more than \(2^{O(lg \lg n)} \) distinct divisors [25], so we have to consider at most \(2^{O(lg \lg n)} \) groups.

Now let \(R_i^1, \ldots, R_i^k \) be the regular expressions in a group, i.e. \(\ell = \ell_i \). By a linear scan through \(T \), we compute in \(O(n) \) time the sets \(T_{i,j}^\dagger \) for \(j = 0, \ldots, \ell \). We store the sets in a hash table for expected constant time lookups, and we store the sizes \(|T_{i,j}^\dagger| \). Then we check whether there is an \(R_{i,k} \) such that \(T_{i,k}^\dagger \subseteq S_{i,h,j} \) for all \(j \). This is done by examining each \(R_{i,k} \) in turn. For each such expression, we check whether \(T_{i,k}^\dagger \subseteq S_{i,h,j} \) for all \(j \). For one \(S_{i,h,j} \), this is done by taking each character of \(S_{i,h,j} \) and testing for membership in \(T_{i,k}^\dagger \). From this, we can compute \(|T_{i,k}^\dagger \cap S_{i,h,j}| \). We conclude that \(T_{i,k}^\dagger \subseteq S_{i,h,j} \) iff \(|T_{i,k}^\dagger \cap S_{i,h,j}| = |T_{i,k}^\dagger| \).

All the membership testing, summed over the entire execution of the algorithm, take expected \(O(m) \) time as we make at most one query per symbol of the input regular expression. Computing the sets \(T_{i,k}^\dagger \) for each divisor \((\ell_i + 1) \) of \(n \) takes \(n^{2O(lg n)} \) time. Thus, we conclude that \(|+\sigma|-membership testing can be solved in expected time \(n^{1+o(1)} + O(m) \).

Sub-types: We argue that the above algorithm also solves any type \(t \) where \(t \) is a subsequence of \(|+\sigma|\). Type \(|+\sigma|\) simply corresponds to the case of just one \(R_i \) and is thus handled by our algorithm above. Moreover, since there
is only one R_i and thus only one divisor $\ell_i + 1$, the running
time of our algorithm improves to $O(n + m)$. Type $| \circ |$ can
be solved by first discarding all R_i with $\ell_i \neq n - 1$ and
then running the above algorithm. Again this leaves only
one value of ℓ_i, and thus the above algorithm runs in time
$O(n + m)$. The type $| + |$ corresponds to the case where each
$\ell_i = 0$ and is thus also handled by the above algorithm.
Again the running time becomes $O(n + m)$ as there is only
one value of ℓ_i. Type $| + \circ |$ is the case where all sets S_i,j
are singleton sets and is thus also handled by the above
algorithm. However, this type is also a subsequence of $| + o +$
and using the algorithm developed in the next section, we
get a faster algorithm for $| + \circ |$ than using the one above.

Type $| |$, $| o |$, $| + |$ are trivial. Type $| + |$ corresponds to the
case of just one R_i having $\ell_i = 0$ and is thus solved in $O(n + m)$
time using our algorithm. Type $| + \circ |$ corresponds to just one
R_i and only singleton sets S_i,j and thus is also solved in
$O(n + m)$ time by the above algorithm. The type $| \circ |$ is the
special case of $| + |$ in which there is only one set R_i and
is thus also solved in $O(n + m)$ time. Types with just one
operator are trivial.

VI. DICHOTOMY

In this section we prove Theorem 6, i.e., we show that the
remaining results in this paper yield a complete dichotomy.

We first provide a proof of Lemma 1.

Proof of Lemma 1: Let $t \in \{ |, o, + \}^*$ and let R be a
homogeneous regular expression of type t. For each claimed
simplification rule (from t to some type t') we show that
there is an easy transformation of R into a regular expression
R' which is homogeneous of type t' and describes the
same language as R (except for rule 3, where the language
is slightly changed by removing the empty string). This
transformation can be performed in linear time. Together
with a similar transformation in the opposite direction, this
yields an equivalence of t-membership and t'-membership
under linear-time reductions.

(1) Suppose that t contains a substring pp, say $t_i =
t_{i+1} = p \in \{ |, o, + \}$, and denote by t' the simplified
type, resulting from t by deleting the entry t_i+1. In R, for
any node on level i put a direct edge to any descendant
in level $i + 2$ and then delete all internal nodes in level
$i + 1$. This yields a regular expression R' of type t'. For any
$p \in \{ |, o, + \}$ it is easy to see that both regular expressions
describe the same language. In particular, this follows from
the facts $(E^*)^* = E^*$ for any regular expression E (and
similarly for $+$) and $(E_{i,1} \circ \ldots \circ E_{i,k(1)}) \circ \ldots \circ (E_{i,1} \circ \ldots \circ E_{i,k(t)}) = E_{i,1} \circ \ldots \circ E_{i,k(1)} \circ \ldots \circ E_{i,1} \circ \ldots \circ E_{i,k(t)}$ for any
regular expressions $E_{i,j}$ (and similarly for $|$). This yields a
linear-time reduction from t-membership to t'-membership.
For the opposite direction, if the i-th layer is labeled p
then we may introduce a new layer between $i - 1$ and i
containing only degree 1 nodes, labelled by p. This means
we replace E^* by $(E^*)^*$, and similarly for $+$.

For o and $|$
the degree 1 vertices are not visible in the written form of
regular expressions\(^2\).

(2) For any regular expressions E_1, \ldots, E_k, the expression
$((E_1^*) \ldots (E_k^*))^+$ describes the same language as
$(E_1 \ldots E_k)^+$. Thus, the inner $+$-operation is redundant
and can be removed. Specifically, for a homogeneous regular
expression of type t with $t_i, t_{i+1}, t_{i+2} = +|+$ we may
contract all edges between layer $i + 1$ and $i + 2$ to obtain
a homogeneous regular expression R' of type t' describing
the same language as R. This yields a linear-time reduction from
t-membership to t'-membership. For the opposite direction,
we may introduce a redundant $+$-layer below any $+|$-layers
without changing the language.

(3) Note that for any regular expression E we can check in
linear time whether it describes the empty string, by a simple
recursive algorithm: No leaf describes the empty string. Any
$*$-node describes the empty string. A $+$-node describes the
empty string if its child does so. A $|$-node describes the
empty string if at least one of its children does so. A $|\circ$
ode describes the empty string if all of its children do so.
Perform this recursive algorithm to decide whether the root
describes the empty string.

Now suppose that t has prefix $r*$ for some $r \in \{ +, | \}^*$,
and denote by t' the type where we replaced the prefix $r*$
by $r+$. Let R be homogeneous of type t, and s a string
for which we want to decide whether it is described by R.
If s is the empty string, then as described above we can
solve the instance in linear time. Otherwise, we adapt R by
labeling any internal node in layer $|r| + 1$ by $+$, obtaining
a homogeneous regular expression R' of type t'. Then R
describes s if and only R' describes s. Indeed, since $*$ allows
more strings than $+$, R describes a superset of R'. Moreover,
if R describes s, then we trace the definitions of $| +$ as
follows. We initialize node v as the root and string x as s. If
the current vertex v is labelled $|$, then the language of v is the
union over the children’s languages, so the current string x
is contained in the language of at least one child v', and we
recursively trace (v', x). If v is labelled $+$, then we can write
x as a concatenation $x_1 \ldots x_k$ for some $k \geq 1$ and all x_i
in the language of the child v' of v. Note that we may remove
all x_t which equal the empty string. For each remaining
x_t we trace (v', x_t). Running this traceback procedure until
layer $|r| + 1$ yields trace calls (v_i, x_i) such that v_i describes
x_i for all i, and the x_i partition s. Since by construction
each x_i is non-empty, x_i is still in the language of v_i if we
relabel v_i by $+$. This shows that s is also described by R',
where we relabeled each node in layer $|r| + 1$ by $+$.

Finally, applying these rules eventually leads to an unsim-
cplifiable type, since rules 1 and 2 reduce the length of the
type and rule 3 reduces the number of $*$-operations. Thus,

\(^2\)This is the only place where we need to use degree 1 vertices; all other
proofs in this paper also work with the additional requirement that each $|$-
or \circ-node has degree at least 2 (cf. footnote 1 on page 3).
Lemma 6. For types \(t, t' \), there is a linear-time reduction from \(t' \)-membership to \(t \)-membership if one of the following conditions holds:
1. \(t' \) is a prefix of \(t \).
2. we may obtain \(t \) from the sequence \(t' \) by inserting a \(| \) at any position.
3. we may obtain \(t \) from the sequence \(t' \) by replacing a \(* \) by \(+, * \), or
4. \(t' \) starts with \(\circ \) and we may obtain \(t \) from the sequence \(t' \) by prepending a \(+ \).

Proof: (1) The definition of “homogeneous with type \(t' \)” does not restrict the appearance of leaves in any level. Thus, any homogeneous regular expression of type \(t' \) (i.e., the prefix) can be seen as a homogeneous regular expression of type \(t \) (i.e., the longer string) where all leaves appear in levels at most \(|t'|+1 \).

(2) Let \(t \) be obtained from \(t' \) by inserting a \(| \) at position \(i \). Consider any homogeneous regular expression \(R' \) of type \(t' \). Viewed as a tree, in \(R \) we subdivide any edge from a node in layer \(i-1 \) to a node in layer \(i \), and mark the newly created nodes by \(| \). This yields a regular expression \(R \) of type \(t \). Since a \(| \) with degree 1 is trivial, the language described by \(R \) is the same as for \(R' \).\(^3\)

(3) Let \(R' \) be a homogeneous regular expression of type \(t' \) with \(t'_i = * \). Subdivide any edge in \(R' \) from a node in layer \(i-1 \) to an internal node in layer \(i \), and label the newly created nodes by \(+ \). This yields a regular expression \(R \) of type \(t \). (Note that by this construction any leaf of \(R' \) in layer \(i \) stays a leaf of \(R \) in layer \(i \).) Consider any newly created node \(v \) with child \(u \). Since \(u \) is an internal node, it is labeled by \(* \) and (its subtree) represents a regular expression \(E^* \). The newly created node \(v \) thus represents the regular expression \((E^*)^+ \). Using the fact \((E^*)^+ = E^*\) for any regular expression \(E \), it follows that \(R \) and \(R' \) describe the same language.

(4) Let \(R' = E_1 \circ \ldots \circ E_k \) be a homogeneous regular expression of type \(t' \). Let \(s' \) be the input string for which we want to know whether it matches \(R' \), and let \(x \) be a fresh symbol not occurring in \(s' \). We construct the expression \(R := (x \circ E_1 \circ \ldots \circ E_k \circ x)^+ \) and the string \(s := xs'x \). Note that \(R \) is homogeneous of type \(t \). Moreover, there are exactly two occurrences of \(x \) in \(s \), and thus \(s \) matches \(R \) if and only if \(s' \) matches \(E_1 \circ \ldots \circ E_k = R' \).

Proof Sketch of Theorem 6: We refer to the full version [13] for the full proof and figures.

The natural way of enumerating all types yields a tree with vertex set \{\(\circ, |, *, + \}\}, where types \(t \) and \(t' \) are connected by an edge if we obtain \(t \) from \(t' \) by appending one of the operations \(\circ, |, *, + \). To keep this tree simple, we directly apply the simplification rule Lemma 1 (1), i.e., we do not consider types with consecutive equal operations. Split this tree into the three according to the first operation \(\circ/|/*, +/| \). Due to space limitations, we only show one of these three trees, corresponding to first operation +, see Figure 1.

In the following we describe this figure. If \(t \)-membership is solvable in almost-linear time, then in the figure we mark the node corresponding to \(t \) by the fastest known running time, and we refer to [12] or our Theorem 4. We remark that most \(O(n + m) \) algorithms are immediate, but for completeness we refer to [12].

If \(t \)-membership simplifies, then \(t \)-membership is equivalent to \(t' \)-membership for some different, non-simplifying type \(t' \) in the tree. In this case, we mark \(t \) by the corresponding simplification rule of Lemma 1. Note that the simplification rules have the property that if \(t \) simplifies then any descendant of \(t \) in the tree also simplifies. Thus, we may ignore the subtree of any simplifying type \(t \).

Thus, we may ignore the subtree of \(t \), and we only mark minimal hardness results. From the results by Backurs and Indyk [12] (Theorem 7) we know that \(t \)-membership takes
time \((nm)^{1-o(1)}\) under SETH for the types \(\preceq, \prec, \preceq +, \prec +, \prec +, \) and \(\preceq +, \cdot\). In the full version of this paper, we add hardness for the types \(+\preceq, +\prec, +\preceq, \) and \(+\prec\). If there is such a direct hardness proof of \(t\)-membership, then in the figure we refer to the corresponding theorem. In all other minimal hard cases, there is a combination of the reduction rules, Lemma 6 (2–4), resulting in a type \(t'\) such that hardness of \(t'\)-membership follows from Theorem 7 and \(t'\)-membership has a linear time reduction to \(t\)-membership. In this case, in the figure we additionally mark the node corresponding to \(t\) by \(t'\). E.g., \(\preceq\cdot\)-membership contains \(\preceq\cdot\)-membership as a special case (since by Lemma 6 (2) we may remove any \(\cdot\) operations) and \(\preceq\cdot\)-membership is hard by Theorem 7, so we mark the node corresponding to \(\cdot\) by “hard \(\preceq\cdot\)“.

It is easy to check that our Figure 1 indeed enumerates all cases starting with \(+\) and thus contains all maximal algorithmic results and minimal hardness results. The claimed dichotomy of Theorem 6 now follows by inspecting the figure, as well as the two remaining figures that can be found in the full version.

REFERENCES

