
Optimal Interactive Coding for Insertions, Deletions, and Substitutions

Alexander A. Sherstov and Pei Wu

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095 USA
Email: {sherstov, pwu}@cs.ucla.edu

Abstract—Interactive coding, pioneered by Schulman
(FOCS ’92, STOC ’93), is concerned with making commu-
nication protocols resilient to adversarial noise. The canonical
model allows the adversary to alter a small constant fraction
of symbols, chosen at the adversary’s discretion, as they pass
through the communication channel. Braverman, Gelles, Mao,
and Ostrovsky (2015) proposed a far-reaching generalization of
this model, whereby the adversary can additionally manipulate
the channel by removing and inserting symbols. They showed
how to faithfully simulate any protocol in this model with
corruption rate up to 1/18, using a constant-size alphabet and
a constant-factor overhead in communication.

We give an optimal simulation of any protocol in this
generalized model of substitutions, insertions, and deletions,
tolerating a corruption rate up to 1/4 while keeping the
alphabet to a constant size and the communication overhead
to a constant factor. Our corruption tolerance matches an
impossibility result for corruption rate 1/4 which holds even
for substitutions alone (Braverman and Rao, STOC ’11).

Keywords-interactive coding; communication complexity;
tree codes; edit distance; insertions and deletions

I. Introduction

Shannon [1], [2] famously considered the problem of

transmitting a message over an unreliable channel. The prob-

lem features an omniscient and computationally unbounded

adversary who controls the communication channel and can

alter a small constant fraction of symbols that pass through

the channel. The choice of symbols to corrupt is up to

the adversary; the only guarantee is an a priori bound on

the fraction of altered symbols, called the corruption rate.

The sender’s objective is to encode the message using a

somewhat longer string so as to always allow the receiver

to recover the original message. Shannon’s problem is the

subject matter of coding theory and has been extensively

studied. In particular, for any constant ε > 0, it is known [3]

how to encode an n-bit message using a string of O(n)

symbols from a constant-size alphabet such that the re-

ceiving party will recover the original message whenever

the fraction of corrupted symbols is at most 1
2
− ε. In

seminal work, Schulman [4]–[6] considered a generalization

of Shannon’s problem to the interactive setting. Here, two

parties Alice and Bob communicate back and forth accord-

ing to a communication protocol agreed upon in advance.

Alice and Bob privately hold inputs X and Y, respectively,

which dictate their behavior throughout the communication

protocol. As before, the communication channel is controlled

by an adversary who can change a small constant fraction

of symbols as they transit through the channel. The goal

is to overcome these corruptions by cleverly simulating the

original protocol with some redundant communication, as

follows. The simulation leaves Alice and Bob with a record

of symbols exchanged between them, where Alice’s record

will generally disagree with Bob’s due to interference by the

adversary. They each need to be able to determine, with no

further communication, the sequence of symbols that would

have been exchanged in the original protocol on the inputs X
and Y in question. Ideally, Alice and Bob’s simulation should

use an alphabet of constant size and have communication

cost within a constant factor of the original protocol.

A naı̈ve solution to Schulman’s problem is for Alice and

Bob to encode their individual messages with an error-

correcting code developed for Shannon’s setting. This ap-

proach fails spectacularly because the adversary is only

restricted by the total number of corruptions rather than the

number of corruptions on a per-message basis. In particular,

the adversary may choose a specific message from Alice to

Bob and corrupt all symbols in it. As a result, the naı̈ve solu-

tion cannot tolerate any corruption rate beyond 1
m , where m

is the total number of messages. Remarkably, Schulman [6]

was able to show how to simulate any communication

protocol with corruption rate up to 1
240
, using a constant-size

alphabet and a constant-factor overhead in communication.

Interactive coding has since evolved into a highly active

research area with a vast literature on virtually every aspect

of the problem, from corruption rate to communication

overhead to computational complexity. We refer the reader

to Gelles [7] for an up-to-date survey. Of particular interest

to us is the work of Braverman and Rao [8], who proved that

any communication protocol can be simulated in Schulman’s

model with corruption rate up to 1
4
− ε for any ε > 0, and

established a matching impossibility result for corruption

rate 1
4
. Analogous to Schulman [6], their simulation uses

a constant-size alphabet and increases the communication

cost only by a constant factor.

In the canonical model discussed above, the adversary

manipulates the communication channel by altering sym-

bols. This type of manipulation is called a substitution. In a

recent paper, Braverman, Gelles, Mao, and Ostrovsky [9]

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.30

240



proposed a far-reaching generalization of the canonical

model, whereby the adversary can additionally manipulate

the channel by inserting and deleting symbols. As Braver-

man et al. point out, insertions and deletions are considerably

more difficult to handle than substitutions even in the one-

way setting of coding theory. To borrow their example,

Schulman and Zuckerman’s polynomial-time coding and

decoding algorithms [10] for insertion and deletion errors

can tolerate a corruption rate of roughly 1
100
, in contrast

to the corruption rate of 1
2
− ε or 1

4
− ε (depending on

the alphabet size) achievable in the setting of substitution

errors alone [3]. As their main result, Braverman et al. [9]

prove that any communication protocol can be simulated

in the generalized model with substitutions, insertions, and

deletions as along as the corruption rate does not exceed
1
18
− ε, for an arbitrarily small constant ε > 0. Analogous

to previous work, the simulation of Braverman et al. uses a

constant-size alphabet and increases the communication cost

only by a multiplicative constant.

The authors of [9] posed the problem of determining the

highest possible corruption rate that can be tolerated in the

generalized model, and of achieving that optimal rate for

every protocol. We give a detailed solution to this problem,

showing that any protocol can be simulated with corruption

rate up to 1
4
− ε for any ε > 0. Recall that this corruption

tolerance is optimal even in the setting of substitutions alone.

A. The model

Following previous work, we focus on communication

protocols in canonical form. In such a protocol, the commu-

nication proceeds in rounds. The number of rounds is the

same on all inputs, and each round involves Alice sending

a single symbol to Bob and Bob sending a symbol back

to Alice. The canonical form assumption is without loss of

generality since any protocol can be brought into canonical

form at the expense of doubling its communication cost.

We now describe the model of Braverman et al. [9] in

more detail. Naı̈vely, one may be tempted to give the adver-

sary the power to delete or insert any symbol at any time.

A moment’s thought reveals that such power rules out any

meaningful computation. Indeed, deleting a single symbol

en route from Alice to Bob will stall the communication,

forcing both parties to wait on each other indefinitely to

send the next symbol. Conversely, inserting a symbol into the

communication channel may result in crosstalk, with both

parties trying to send a symbol at the same time. Braverman

et al. [9] proposed a natural and elegant formalism, to which

we refer as the BGMO model, that avoids these abnormali-

ties. In their model, deletions and insertions occur in pairs,

with every deletion immediately followed by an insertion.

In other words, the BGMO model gives the adversary the

capability to intercept any symbol σ in transit from one party

to the other and insert a spurious symbol σ′ in its place.

The adversary is free to decide which party will receive the

inserted symbol. This makes possible two types of attacks.

In a substitution attack, the inserted symbol is routed the

same way as the original symbol. Such an attack is precisely

equivalent to a substitution in Schulman’s model [6]. In an

out-of-sync attack, on the other hand, the inserted symbol

is delivered to the sender of the original symbol. From the

sender’s point of view, an out-of-sync attack looks like a

response from the other party, whereas that other party does

not even know that any communication has taken place and

continues to wait for an incoming symbol. Braverman et

al. [9] examine a variety of candidate models, including

some that are clock-driven rather than message-driven, and

demonstrate that the BGMO model is essentially the only

reasonable interactive formalism that allows deletions and

insertions. It is important to note here that even though

deletions and insertions in the BGMO model occur in pairs,

the corruption pattern experienced by any given party can

be an arbitrary sequence of deletions and insertions.

B. Our results

For the purposes of defining the corruption rate, a

deletion-insertion pair in the BGMO model counts as a

single corruption. This means that with corruption rate δ,
the adversary is free to carry out as many as δM attacks,

where M is the worst-case number of sent symbols. The

main result of our paper is the following theorem, where |π|
denotes the worst-case communication cost of a protocol π.

Theorem 1. Fix an arbitrary constant ε > 0, and let π be
an arbitrary protocol with alphabet Σ. Then there exists a
simulation for π with alphabet size O(1) and communication
cost O(|π| log |Σ|) that tolerates corruption rate 1

4
− ε in the

BGMO model.

Theorem 1 matches an upper bound of 1
4

on the highest pos-

sible corruption rate, due to Braverman and Rao [8], which

holds even if the adversary is restricted to substitutions.

Theorem 1 is particularly generous in that it gives the

adversary a flat budget of δM attacks, where δ is the

corruption rate and M is the maximum number of sent

symbols over all executions. Due to out-of-sync attacks,

the number of symbols sent in a given execution may be

substantially smaller than M. This can happen, for example,

if the adversary uses out-of-sync attacks to force one of

the parties to exit before his or her counterpart has reached

the end of the simulation. In such case, the actual ratio

of the number of attacks to the number of sent symbols

may substantially exceed δ. This leads us to consider the

following alternate formalism: with normalized corruption
rate (εsubs, εoos), the number of substitution attacks and out-

of-sync attacks in any given execution must not exceed an

εsubs and εoos fraction, respectively, of the number of symbols

sent in that execution. In this setting, we prove the following

theorem.

241



Theorem 2 (Normalized corruption rate). Fix an arbitrary
constant ε > 0, and let π be an arbitrary protocol with
alphabet Σ. Then there exists a simulation for π with
alphabet size O(1) and communication cost O(|π| log |Σ|) that
tolerates any normalized corruption rate (εsubs, εoos) in the
BGMO model with εsubs +

3
4
εoos � 1

4
− ε.

We show that Theorem 2, too, is optimal with respect to

the normalized corruption rates that it tolerates; see the full

version of this paper [11, Section 5.9]. In the interesting

special case when the adversary is restricted to out-of-sync

attacks, Theorem 2 tolerates normalized corruption rate 1
3
−ε

for any ε > 0. This contrasts with the maximum possible

corruption rate that can be tolerated with substitutions alone,

namely, 1
4
− ε. Thus, there is a precise technical sense

in which substitution attacks are more powerful than out-

of-sync attacks. As we will discuss shortly, however, the

mere presence of out-of-sync attacks greatly complicates the

analysis and requires a fundamentally different approach.

In Theorems 1 and 2, each player computes the transcript

of the simulated protocol based on his or her entire record

of sent and received symbols, from the beginning of time

until the communication stops. In the full version of this

paper [11, Section 5.8], we further adapt Theorem 1 to the

setting where Alice and Bob wish to know the answer by a

certain round, according to each player’s own counting. In

particular, Braverman et al. [9] required each player to know

the answer by round (1 − 2δ)N, where N is the maximum

number of rounds and δ is the corruption rate. With that

requirement, we give a simulation that tolerates corruption

rate 1
6
−ε for any ε > 0, which is optimal by the impossibility

result in [9, Theorem G.1].

C. Background on interactive coding

In what follows, we review relevant previous work [6], [8],

[9] on interactive coding and contrast it with our approach.

A key tool in this line of research is a tree code, a coding-

theoretic primitive developed by Schulman [6]. Let Σin and

Σout be nonempty finite alphabets. A tree code is any length-

preserving map C : Σ∗
in
→ Σ∗out with the property that for

any input string s ∈ Σ∗
in

and any i = 1, 2, 3, . . . , the first i
symbols of the codeword C(s) are completely determined

by the first i symbols of the input string s. A tree code

has a natural representation as an infinite tree in which

every vertex has arity |Σin| and every edge is labeled with a

symbol from Σout. To compute the codeword corresponding

to a given input string s = s1s2 . . . sk, one starts at the root

and walks down the tree for k steps, choosing at the ith

step the branch that corresponds to si. The sought codeword

C(s), then, is the concatenation of the edge labels along

this path. Tree codes are well-suited for encoding interactive

communication because Alice and Bob must compute and

send symbols one at a time, based on each other’s responses,

rather than all at once at the beginning of the protocol. In

more detail, if Alice has used a tree code C to send Bob

s1, s2, . . . , sk−1 and now wishes to send him sk, she need

only send the kth symbol of C(s1s2 . . . sk) rather than all of

C(s1s2 . . . sk). This works because by the defining properties

of a tree code, the first k − 1 symbols of C(s1s2 . . . sk) are

precisely C(s1s2 . . . sk−1) and are therefore known to Bob

already. To additionally cope with adversarial substitutions,

Schulman used tree codes in which different codewords

are “far apart.” More precisely, for any two input strings

s, s′ ∈ Σ∗
in

of equal length with s1s2 . . . sk = s′1s′2 . . . s
′
k but

sk+1 � s′k+1
, the codewords C(s) and C(s′) disagree in a 1−α

fraction of positions beyond the kth. Schulman [6] showed

the existence of such tree codes for any α > 0, where the

size of the output alphabet depends only on α and the input

alphabet. Figure 1 (left) offers an illustration of the distance

property for tree codes: the concatenation of the labels on

the solid path should disagree with the concatenation of the

labels on the dashed path in a 1 − α fraction of positions.

Finally, when attempting to recover the codeword from a

corrupted string y ∈ Σ∗out, one outputs the codeword of

length |y| that is closest to y in Hamming distance. This

recovery procedure produces the true codeword whenever y
is sufficiently close to some codeword in suffix distance, a

distance on strings that arises in a natural way from tree

code properties.

We now review protocol terminology. Fix a deterministic

protocol π in canonical form that Alice and Bob need to

simulate on their corresponding inputs X and Y . Let Σ and

n denote the alphabet and the communication cost of π,
respectively. Associated to π is a tree of depth n called the

protocol tree for π. Each vertex in this tree corresponds to

the state of the protocol at some point in time, with the root

corresponding to the initial state before any symbols have

been exchanged, and each leaf corresponding to a final state

when the communication has ended. Each internal vertex

has arity |Σ|, corresponding to all possible symbols that can

be transmitted at that point. Execution of π corresponds to

a walk down the protocol tree, as follows. A given input X
for Alice makes available precisely one outgoing edge for

every internal vertex of even depth, corresponding to the

symbol that she would send if the execution were to arrive

at that vertex. Similarly, an input Y for Bob makes available

precisely one outgoing edge for every internal vertex of odd

depth. To execute π, Alice and Bob walk down the protocol

tree one edge at a time, at each step selecting the edge that is

dictated by the input of the player whose turn it is to speak.

D. The Braverman–Rao simulation

We are now in a position to describe the simulation

of Braverman and Rao [8] for the model with adversarial

substitutions. Using the tree view of communication, we can

identify Alice’s input X with a set EX of outgoing edges for

the protocol tree vertices at even depths, one such edge per

vertex. Analogously, Bob’s input Y corresponds to a set EY

242



Figure 1. Distance constraints for codewords in a tree code (left) and an
edit distance tree code (right).

of outgoing edges for the vertices at odd depths. Execution

of π, then, corresponds to identifying the unique root-to-

leaf path made up of edges in EX ∪ EY . In Braverman and

Rao’s simulation, all communication is encoded and decoded

using a tree code with the parameter α > 0 set to a small

constant. The simulation amounts to Alice and Bob taking

turns sending each other edges from their respective sets

EX and EY . When it is Alice’s turn to speak, she decodes

the edge sequence received so far and attempts to extend the

path made up of her sent and received edges by another edge

from EX , communicating this new edge to Bob. Bob acts

analogously. When the communication stops, Alice decodes

her complete sequence of received edges, identifies the first

prefix of that sequence whose edges along with EX contain

a root-to-leaf path, and takes this root-to-leaf path to be the

transcript of π. Bob, again, acts analogously.

In the described simulation, the edge that a player sends

at any given point may be irrelevant but it is never incorrect.

In particular, Alice and Bob make progress in every round

where they correctly decode the edge sequences that they

have received so far. Braverman and Rao use a relation

between suffix distance and Hamming distance to argue that

with overall corruption rate 1
4
−ε, Alice decodes her received

edge sequence correctly more often than half of the time, and

likewise for Bob. This means that there are a considerable

number of rounds where Alice and Bob both decode their

received sequences correctly. It follows that at some point t∗,
Alice and Bob will have exchanged every edge in the root-to-

leaf path in EX∪EY . As a final ingredient, the authors of [8]

argue that the adversary’s remaining budget for corruptions

beyond time t∗ cannot “undo” this progress, in the sense

that at the end of the communication Alice and Bob will

correctly decode a prefix that contains the root-to-leaf path

in EX ∪ EY .

E. The BGMO simulation

We now describe the simulation of Braverman et al. [9]

in the BGMO model with substitutions, insertions, and dele-

tions. The authors of [9] draw inspiration from the classic

work of Levenshtein [12], who developed codes that allow

recovery from insertions and deletions in the noninteractive

setting. Recall that when coding for substitution errors, one

uses codewords that are far apart in Hamming distance [3].

Analogously, Levenshtein used codewords that are far apart

in edit distance, defined for a pair of strings as the minimum

number of insertions and deletions needed to transform one

string into the other. To handle interactive communication,

then, it is natural to start as Braverman et al. do with a tree

code in which the codewords are far apart in edit distance

rather than Hamming distance. They authors of [9] discover,

however, that it is no longer sufficient to have distance

constraints for pairs of codewords of the same length.

Instead, for any two paths of arbitrary lengths that cross

to form a lambda shape, such as the solid and dashed paths

in Figure 1 (right), the associated codeword segments need

to be far apart in edit distance. Braverman et al. establish

the existence of such edit distance tree codes and develop a

notion of suffix distance for them, thus providing a sufficient

criterion for the recovery of the codeword from a corrupted

string.

Algorithmically, the BGMO simulation departs from

Braverman and Rao’s in two ways. First, all communication

is encoded and decoded using an edit distance tree code.

Second, a different mechanism is used to decide which leaf

of the protocol tree for π to output, whereby each player

keeps a tally of the number of times any given leaf has

been reached during the simulation and outputs the leaf with

the highest tally. The resulting analysis is quite different

from [8], out-of-sync attacks being the main source of

difficulty. Braverman et al. start by showing that each player

correctly decodes his or her received sequence of edges

often enough over the course of the simulation. This does

not imply progress, however. Indeed, all of Alice’s correct

decodings may conceivably precede all of Bob’s, whereas

progress is only guaranteed when the players’ correct de-

codings are interleaved. To prove that this interleaving takes

place, Braverman et al. split the simulation into n progress

intervals, corresponding to the length of the longest segment

recovered so far from the root-to-leaf path in EX ∪ EY .
They use an amortized analysis to argue that the number of

unsuccessful decodings per interval is small on the average,

allowing Alice and Bob to reach the leaf on the root-to-leaf

path in EX ∪EY at some point in the simulation. They finish

the proof by arguing that the players revisit this leaf often

enough that its tally outweighs that of any other leaf.

F. Our approach

There are several obstacles to improving the corruption

tolerance from 1
18
− ε in Braverman et al. [9] to an optimal

1
4
− ε. Some of these obstacles are of a technical nature,

whereas others require a fundamental shift in approach and

analysis. In the former category, we develop edit distance

tree codes with stronger guarantees. Specifically, Braverman

243



et al. use tree codes with the property that for any two

paths that cross to form a lambda shape in the code tree,

the edit distance between the associated codeword segments

is at least a 1 − α fraction of the length of the longer
path. We prove the existence of tree codes that guarantee

a stronger lower bound on the edit distance, namely, a

1 − α fraction of the sum of the lengths of the paths.

This makes intuitive sense because the typical edit distance

between randomly chosen strings of lengths �1 and �2 over

a nontrivial alphabet is approximately �1 + �2 rather than

max{�1, �2}; see the full version of this paper [11, Prop. 2.2].

Our second improvement concerns the decoding process.

The notion of suffix distance used by Braverman et al. is not

flexible enough to support partial recovery of a codeword.

We define a more general notion that we call k-suffix distance
and use it to give a sufficient criterion for the recovery

of the first k symbols of the codeword from a corrupted

string. This makes it possible to replace the tally-based

output criterion of Braverman et al. with a more efficient

mechanism, whereby Alice and Bob compute their output

based on a prefix on the received edge sequence rather than

the entire sequence.

The above technical improvements fall short of achieving

an optimal corruption rate of 1
4
− ε. The fundamental stum-

bling block is the presence of out-of-sync attacks. For one

thing, Alice and Bob’s transmissions can now be interleaved

in a complex way, and the basic notion of a round of

communication is no longer available. Out-of-sync attacks

also break the symmetry between the two players in that

it is now possible for one of them to receive substantially

fewer symbols than the other. Finally, by directing a large

number of out-of-sync attacks at one of the players, the

adversary can force the simulation to stop early and thereby

increase the effective error rate well beyond 1
4
− ε. These

are good reasons to doubt the existence of a simulation that

tolerates corruption rate 1
4
− ε with substitutions, insertions,

and deletions.

Our approach is nevertheless based on the intuition that

out-of-sync attacks should actually help the analysis because

they spread the brunt of a corruption between the two

players rather than heaping it all on a single player. Indeed,

the deletion that results from an out-of-sync attack only

affects the receiver, whereas the insertion only affects the

sender. This contrasts with substitution attacks, where the

deletions and insertions affect exclusively the receiver. With

this in mind, convexity considerations suggest that out-of-

sync attacks may actually be less damaging overall than

substitution attacks. To bear out this intuition, we introduce

a “virtual” view of communication that centers around the

events experienced by Alice and Bob (namely, insertions,

deletions, and successful deliveries) rather than the symbols
that they send. In this virtual view, the length of a time

interval and the associated error rate are defined in terms

of the number of alternations in events rather than in terms

of the number of sent symbols. Among other things, the

virtual view restores the symmetry between Alice and Bob

and makes it impossible for the adversary to shorten the

simulation using out-of-sync attacks. By way of analysis,

we start by proving that corruption rate 1
4
− ε translates into

virtual corruption rate 1
4
−Ω(ε). Next, we split the simulation

into n progress intervals, corresponding to the length of

the longest segment recovered so far from the root-to-leaf

path in EX ∪ EY , and a final interval that encompasses the

remainder of the simulation. We bound the virtual length

of each interval in terms of the number of corruptions and

successful decodings. We then contrast this bound with the

virtual length of the overall simulation, which unlike actual

length is never smaller than the simulation’s worst-case

communication complexity. Using the previously obtained
1
4
−Ω(ε) upper bound on the virtual corruption rate, we argue

that Alice and Bob successfully output the root-to-leaf path

in EX ∪ EY when their communication stops.

II. Preliminaries

A. General

The complement of a set A is denoted A. For arbitrary

sets A and B, we define the cardinality of A relative to B by

|A|B = |A ∩ B|. For a set A and a sequence s, we let A ∪ s
denote the set of elements that occur in either A or s. We

define A ∩ s analogously. We abbreviate [n] = {1, 2, . . . , n},
where n is any positive integer. We let N = {0, 1, 2, 3, . . . }
and Z+ = {1, 2, 3, . . .} denote the set of natural numbers

and the set of positive integers, respectively. We use the

term integer interval to refer to any set of consecutive

integers (finite or infinite). We perform all calculations in

the extended real number system R∪{−∞,∞}. In particular,

we have a/0 = ∞ for any positive number a ∈ R. To simplify

our notation, we further adopt the convention that 0/0 = 0.
We let log x denote the logarithm of x to base 2.

B. String notation

An alphabet Σ is any nonempty finite set of symbols other

than the asterisk ∗, which we treat as a reserved symbol.

Recall that Σ∗ stands for the set of all strings over Σ. We let

ε denote the empty string and adopt the standard shorthand

Σ+ = Σ∗ \ {ε}. The concatenation of the strings u and v is

denoted uv. For any alphabet Σ, we let ≺ denote the standard

partial order on Σ∗ whereby u ≺ v if and only if uw = v
for a nonempty string w. The relations 
,�,� are defined

analogously. A prefix of v is any string u with u � v. A

suffix of v is any string u such that v = wu for some string

w. A prefix or suffix of v is called proper if it is not equal

to v. A subsequence of v is v itself or any string that can be

obtained from v by deleting one or more symbols.

For any string v, we let |v| denote the number of symbols

in v. We consider the symbols of v to be indexed in the usual

manner by positive integers, with vi denoting the symbol

at index i. For a set A, we use the subsequence notation

244



v|A = vi1 vi2 . . . vi|A| , where i1 < i2 < · · · < i|A| are the elements

of A. For a number ι ∈ [0,∞] in the extended real number

system, we let v<ι denote the substring of v obtained by

keeping the symbols at indices less than ι. As special cases,

we have v<1 = ε and v<∞ = v. The substrings v�ι, v>ι, and

v�ι are defined analogously. In any of these four definitions,

an index range that is empty produces the empty string ε.

C. Edit distance

Recall that the asterisk ∗ is a reserved symbol that does not

appear in any alphabet Σ in this paper. For a string v ∈ (Σ∪
{∗})∗, we let ∗(v) and ∗(v) denote the number of asterisks and

non-asterisk symbols in v, respectively. Thus, ∗(v)+∗(v) = |v|.
We let  ∗(v) stand for the string of length ∗(v) obtained from

v by deleting the asterisks. For example,  ∗(∗ab∗aa) = abaa
and  ∗(∗) = ε for any alphabet symbols a, b.

An alignment for a given pair of strings s, r ∈ Σ∗ is a pair

of strings S ,R ∈ (Σ ∪ {∗})∗ with the following properties:

(i) |S | = |R|,
(ii)  ∗(S ) = s,

(iii)  ∗(R) = r,
(iv) ∀i : Ri � ∗ ∨ S i � ∗,
(v) ∀i : (Ri � ∗ ∧ S i � ∗) =⇒ Ri = S i.

We write S || R to indicate that S and R are an alignment

for some pair of strings. For an alignment S || R, the strings

S |A,R|A for any given subset A of indices also form an

alignment, to which we refer as a subalignment of S || R.
The edit distance between strings s, r ∈ Σ∗ is denoted

ED(s, r) and is given by ED(s, r) = min{∗(S ) + ∗(R)},
where the minimum is over all alignments S || R for s, r.
Equivalently, ED(s, r) is the minimum number of insertion

and deletion operations necessary to transform s into r. In

this equivalence, an alignment S || R represents a specific

way to transform s into r, indicating the positions of the

insertions (S i = ∗,Ri � ∗), deletions (S i � ∗,Ri = ∗), and

unchanged symbols (S i = Ri � ∗).
D. Suffix distance

For an alignment S || R, define Δ(S ,R) = (∗(S ) +

∗(R))/∗(S ). This quantity ranges in [0,∞], with the extremal

values taken on. For example, Δ(ε, ε) = Δ(a, a) = 0 and

Δ(∗, a) = ∞, where a is any alphabet symbol. The suffix
distance for an alignment S || R is given by SD(S ,R) =

maxi�1 Δ(S �i,R�i). This notion was introduced recently by

Braverman et al. [9], inspired in turn by an earlier notion of

suffix distance due to Schulman [6]. In our work, we must

consider a more general quantity yet. Specifically, we define

SDk(S ,R) for 0 � k � ∞ to be the maximum Δ(S �i,R�i) over

all indices i for which ∗(S <i) < k, with the convention that

SDk(S ,R) = 0 for k = 0. As functions, we have

0 = SD0 � SD1 � SD2 � SD3 � · · · � SD∞ = SD . (1)

We generalize the above definitions to strings s, r ∈ Σ∗ by let-

ting SD(s, r) = min SD(S ,R) and SDk(s, r) = min SDk(S ,R),

where in both cases the minimum is over all alignments

S || R for s, r. The proof of the following proposition can be

found in the full version of our paper [11, Prop. 3.1].

Proposition 3. Fix alignments S ′ || R′ and S ′′ || R′′. Then:
(i) Δ(S ′S ′′,R′R′′) � max{Δ(S ′,R′),Δ(S ′′,R′′)};

(ii) Δ(S ′S ′′,R′R′′) � min{Δ(S ′,R′),Δ(S ′′,R′′)};
(iii) SD(S ′S ′′,R′R′′) � max{SD(S ′,R′), SD(S ′′,R′′)};
(iv) SDk(S ′S ′′,R′R′′) � max{SDk(S ′,R′),Δ(S ′′,R′′)} for

k � ∗(S ′).

E. Trees and tree codes
In a given tree, a rooted path is any path that starts at

the root of the tree. The predecessors of a vertex v are any

of the vertices on the path from the root to v, including v
itself. We analogously define the predecessors of an edge e
to be any of the edges of the rooted path that ends with e,
including e itself. A proper predecessor of a vertex v is any

predecessor of v other than v itself; analogously for edges.

In keeping with standard practice, we draw trees with the

root at the top and the leaves at the bottom. Accordingly,

we define the depth of a vertex v as the length of the path

from the root to v. Similarly, the depth of an edge e is the

length of the rooted path that ends with e. We say that a

given vertex v is deeper than another vertex u if the depth

of v is larger than the depth of u; and likewise for edges.

Definition 4 (α-violation). Fix a tree code C : Σ∗
in
→ Σ∗out

and a real 0 � α < 1. A quadruple (A, B,D, E) of vertices

in the tree representation of C form an α-violation if:

(i) B is the deepest common predecessor of D and E;
(ii) A is any predecessor of B; and

(iii) ED(AD, BE) < (1 − α)(|AD| + |BE|), where AD ∈ Σ∗out

is the concatenation of the code symbols along the

path from A to D, and analogously BE ∈ Σ∗out is the

concatenation of the code symbols along the path from

B to E.
An α-good code is any tree code C for which no vertices

A, B,D, E in its tree representation form an α-violation.

Definition 4 strengthens an earlier formalism due to Braver-

man et al. [9], in which the inequality ED(AD, BE) <
(1−α) max{|AD|, |BE|} played the role of our constraint (iii).

The strengthening is essential to the tight results of our

paper. The following theorem ensures the existence of α-

good codes with good parameters.

Theorem 5. For any alphabet Σin, any 0 < α < 1, and any
integer n � 0, there is an α-good code C : Σ∗

in
→ Σ∗out of

depth n with

|Σout| =
⌈
(10|Σin|)1/α e

α

⌉2

.

This theorem and its proof are adaptations of an earlier result

due to Braverman et al. [9]. A complete and self-contained

245



proof of Theorem 5 is available in the full version of this

paper [11, Appendix A].

Fact 6. Let C : Σ∗
in
→ Σ∗out be any α-good code, where 0 �

α < 1. Then C is one-to-one.

A proof of this fact is available in the full version of this

paper [11, Fact 2.6].

In contrast to the work of Braverman et al. [9], our

interactive coding schemes use longest prefix decoding,

whereby the receiver attempts to correctly decode as long a

prefix of the original sequence as possible. Our decoding is

based on the following theorem, proved in the full version

of this paper [11, Thm. 3.4].

Theorem 7. Let C : Σ∗
in
→ Σ∗out be an α-good code, 0 < α <

1. Then there is an algorithm DecodeC,α : Σ∗out → Σ∗out that
runs in finite time and obeys (DecodeC,α(r))�k = s�k for any
real 0 � k � ∞, any codeword s, and any string r ∈ Σ∗out

with SDk(s, r) < 1 − α.
F. Communication model

In a communication protocol, the transfer of an alphabet

symbol from one party to the other is an atomic operation to

which we refer as a transmission. The output of the protocol

π on a given pair of inputs X, Y, denoted π(X, Y), is the

complete sequence of symbols exchanged between Alice and

Bob on that pair of inputs. The communication cost of π,
denoted |π|, is the worst-case number of transmissions, or

equivalently the maximum length of the protocol output on

any input pair.

We adopt the corruption model due to Braverman et

al. [9], reviewed in the introduction. With the adversary

present, the output of a player in a particular execution is

the complete sequence of symbols, ordered chronologically,

that that player sends and receives over the course of the

execution.

Definition 8 (Coding scheme). Let π be a given protocol

with input space X × Y. We say that protocol Π is an

interactive coding scheme for π that tolerates corruption
rate ε if:

(i) Π has input space X ×Y and is in canonical form;

(ii) when Π is executed on a given pair of inputs (X, Y) ∈
X×Y, the adversary is allowed to subject any transmis-

sion in Π to a substitution attack or out-of-sync attack,

up to a total of at most ε|Π| attacks;

(iii) there exist functions f ′, f ′′ such that for any pair of

inputs (X, Y) ∈ X×Y and any allowable behavior by the

adversary, Alice’s output a and Bob’s output b satisfy

f ′(a) = f ′′(b) = π(X, Y).

Coding schemes for normalized corruption rate are defined

analogously.

III. A coding scheme with a polynomial-size alphabet

We will now show how to faithfully simulate any protocol

in the adversarial setting at the expense of a large increase

in alphabet size and a constant-factor increase in communi-

cation cost:

Theorem 9. Fix an arbitrary constant ε > 0, and let π be
an arbitrary protocol with alphabet Σ. Then there exists an
interactive coding scheme for π with alphabet size (|Σ|·|π|)O(1)

and communication cost O(|π|) that tolerates
(i) corruption rate 1

4
− ε;

(ii) any normalized corruption rate (εsubs, εoos) with εsubs +
3
4
εoos � 1

4
− ε.

We have organized our proof around nine milestones, corre-

sponding to Sections III-A–III-I. Looking ahead, we will

obtain the main result of this paper by improving the

alphabet size to a constant.

A. The simulation
Recall that any protocol can be brought into canonical

form at the expense of doubling its communication cost.

We may therefore assume that π is in canonical form to

start with. As a result, we may identify Alice’s input with

a set X of odd-depth edges of the protocol tree for π, and

Bob’s input with a set Y of even-depth edges. Execution of

π corresponds to a walk down the unique root-to-leaf path

in X ∪ Y, whose length we denote by n = |π|. Analogous

to previous work [8], [9], our interactive coding scheme

involves Alice and Bob sending edges from their respective

input sets X and Y . At any given point, Alice will send an

edge e only if she has already sent every proper predecessor

of e in X, and likewise for Bob. This makes it possible for

the sender to represent an edge e succinctly as a pair (i, σ),
where i is the index of a previous transmission by the sender

that featured the grandparent of e, and σ ∈ Σ × Σ uniquely

identifies e relative to that grandparent. When transmitting

an edge e of depth 1 or 2, the sender sets i = 0 to indicate

that there are no proper predecessors to refer to. Viewing

each (i, σ) pair as an alphabet symbol, the resulting alphabet

Σin has size at most |Σ|2 multiplied by the total number of

transmissions. The following lemma shows that given any

sequence of edge representations, it is always possible to

recover the corresponding sequence of edges; see the full

version [11, Lem. 4.2] for the proof.

Lemma 10. Consider an arbitrary point in time, and let

(i1, σ1), (i2, σ2), . . . (it, σt) (2)

be the sequence of edge representations sent so far by one
of the players. Then the sequence uniquely identifies the
corresponding edges e1, e2, . . . , et sent by that player.

A formal description of our interactive coding scheme is

given in Figures 2 and 3 for Alice and Bob, respectively.

246



Input: X (set of Alice’s edges)

1 encode and send the edge in X incident to the root

2 for i = 1, 2, 3, . . . ,N do
3 receive a symbol ri ∈ Σout

4 s ← DecodeC,α(r1r2 . . . ri)

5 interpret s as a sequence B of even-depth edges

6 � ← maximum length of a rooted path in X ∪ B

7 compute the shortest prefix of B s.t. X ∪ B contains a

rooted path of length �, and let P be the rooted path

so obtained

8 out ← deepest vertex in P

9 if i � N − 1 then
10 encode and send the deepest edge in P∩ X whose

proper predecessors in X have all been sent

11 end if
12 end for

Figure 2. The coding scheme for Alice.

In this description, α = α(ε) ∈ (0, 1) and N = N(n, ε) are

parameters to be set later, and C : Σ∗
in
→ Σ∗out is an arbitrary

α-good code whose existence is ensured by Theorem 5.

Alice and Bob use C to encode every transmission. In

particular, the encoded symbol from Σout at any given point

depends not only on the symbol from Σin being transmitted

but also on the content of previous transmissions by the

sender. The decoding is done using the DecodeC,α algorithm

of Theorem 7. Apart from the initial send by Alice in line 1,

the roles of two players are symmetric. In particular, the

pseudocode makes it clear that Alice and Bob send at most

N transmissions each. We conclude that |Σin| � |Σ|2 · 2N and

therefore by Theorem 5,

|Σout| = (|Σ| · N)O(1/α). (3)

We pause to elaborate on the decoding and interpretation

steps in lines 4–5 for Alice and lines 3–4 for Bob. The

decoding step produces a codeword s of C, which by Fact 6

corresponds to a unique string in Σ∗
in
. Recall that this string

is of the form (2) for some integers i1, i2, . . . , it and some

σ1, σ2, . . . , σt ∈ Σ×Σ. The receiving party uses the inductive

procedure of Lemma 10 to convert (2) to a sequence of

edges. It may happen that (2) is syntactically malformed;

in that case, the receiving party interrupts the interpretation

process at the longest prefix of (2) that corresponds to a

legitimate sequence of edges. This completes the interpreta-

tion step, yielding a sequence of edges A for Bob and B for

Alice.

In Sections III-B–III-I below, we examine an arbitrary

but fixed execution of the interactive coding scheme. In

particular, we will henceforth consider the inputs X and

Input: Y (set of Bob’s edges)

1 for i = 1, 2, 3, . . . ,N do
2 receive a symbol ri ∈ Σout

3 s ← DecodeC,α(r1r2 . . . ri)

4 interpret s as a sequence A of odd-depth edges

5 � ← maximum length of a rooted path in Y ∪ A

6 compute the shortest prefix of A s.t. Y ∪ A contains a

rooted path of length �, and let P be the rooted path

so obtained

7 out ← deepest vertex in P

8 encode and send the deepest edge in P ∩ Y whose

proper predecessors in Y have all been sent

9 end for

Figure 3. The coding scheme for Bob.

Y and the adversary’s actions to be fixed. We allow any

behavior by the adversary as long as it meets one of the

criteria (i), (ii) in Theorem 9. We will show that as soon

as the communication stops, the variable out is set for both

Alice and Bob to the leaf vertex of the unique root-to-leaf

path in X ∪ Y . This will prove Theorem 9.

B. Events

A central notion in our analysis is that of an event. There

are three types of events: deletions, insertions, and good

events. A successful transmission corresponds to a single

event, which we call a good event. A transmission that

is subject to an attack, on the other hand, corresponds to

two events, namely, a deletion event followed immediately

by an insertion event. Each event has an addressee. The

addressee of a good event is defined to be the receiver of

the transmission. Similarly, the deletion and insertion events

that arise from a substitution attack are said to be addressed

to the receiver of the transmission. In an out-of-sync attack,

on the other hand, the deletion event is addressed to the

intended receiver of the transmission, whereas the insertion

event is addressed to the sender.

Execution of the interactive coding scheme gives rise to

a string alignment S ′ || R′ for Alice and a string alignment

S ′′ || R′′ for Bob. Each position i in the strings S ′ and R′
corresponds in a one-to-one manner to an event addressed

to Alice, which is either a good event (S ′
i = R′i), a deletion

(S ′
i � ∗,R′i = ∗), or an insertion (S ′

i = ∗,R′i � ∗). An analo-

gous description applies to Bob’s strings S ′′ and R′′. For in-

tegers i � j, we let S ′[i, j] || R′[i, j] denote the subalignment

of S ′ || R′ that corresponds to transmissions i, i + 1, . . . , j.
Analogously, S ′′[i, j] || R′′[i, j] denotes the subalignment of

S ′′ || R′′ that corresponds to transmissions i, i + 1, . . . , j.
We alert the reader that in our notation, S ′

i and S ′[i, i]

247



have completely different meanings: the former is the ith

symbol of S ′, whereas the latter is the substring of S ′ that

corresponds to the ith transmission. We define

G′ = {i : S ′[i, i] = R′[i, i] � ε},
D′ = {i : R′[i, i] contains ∗},
I′ = {i : S ′[i, i] contains ∗}.

In words, G′,D′, I′ are the sets of transmissions that con-

tribute a good event, a deletion event, and an insertion event,

respectively, addressed in each case to Alice. We define

analogous sets G′′,D′′, I′′ for Bob, and abbreviate

G = G′ ∪G′′, D = D′ ∪ D′′, I = I′ ∪ I′′.

We let T denote the combined number of transmissions sent

by Alice and Bob. Since neither player can send more than

N transmissions, we have

T � 2N. (4)

C. Excellent transmissions

As we now show, the codewords  ∗(S ′[1, t]) and  ∗(S ′′[1, t])
completely reveal the sequences of edges sent by Bob

and by Alice, respectively, over the course of the first t
transmissions.

Lemma 11. Let t ∈ {1, 2, . . . ,T } be given. Then:
(i) the string  ∗(S ′[1, t]) uniquely identifies the sequence of

protocol tree edges that Bob sends Alice over the course
of transmissions 1, 2, . . . , t;

(ii) the string  ∗(S ′′[1, t]) uniquely identifies the sequence
of protocol tree edges that Alice sends Bob over the
course of transmissions 1, 2, . . . , t.

The proof of this lemma is available in the full version of

the paper [11, Lem. 4.4]. Of course, due to interference by

the adversary, the receiving party rarely if ever has access

to the exact codeword sent by his or her counterpart. This

motivates us to identify sufficient conditions that allow for

complete and correct decoding by the receiving party. Define

E′ = {i ∈ G′ : SD(S ′[1, i],R′[1, i]) < 1 − α},
E′′ = {i ∈ G′′ : SD(S ′′[1, i],R′′[1, i]) < 1 − α}.

We refer to E′ and E′′ as the sets of excellent transmissions

for Alice and Bob, respectively. This term is borne out by

the following lemma.

Lemma 12. Let t ∈ {1, 2, . . . ,T } be given.
(i) If t ∈ E′, then on receipt of transmission t, Alice is able

to correctly recover the complete sequence of edges that
Bob has sent her by that time.

(ii) If t ∈ E′′, then on receipt of transmission t, Bob is able
to correctly recover the complete sequence of edges that
Alice has sent him by that time.

Proof. By symmetry, it suffices to prove the former

claim. Let t ∈ E′. Then by definition, SD(S ′[1, t],R′[1, t]) <
1 − α. Taking k = ∞ in Theorem 7, we conclude that

DecodeC,α( ∗(R′[1, t])) =  ∗(S ′[1, t]). This means that on

receipt of transmission t, Alice is able to correctly recover

the entire codeword  ∗(S ′[1, t]) that Bob has sent her so far.

By Lemma 11, this in turn makes it possible for Alice to

correctly identify the corresponding sequence of edges.

D. Bad transmissions

Recall that each symbol received by Alice from the

communication channel corresponds in a one-to-one manner

to a good event or an insertion. Put another way, each such

symbol originates in a one-to-one manner from a transmis-

sion in G′ ∪ I′. As we saw in Section III-C, the symbols

that correspond to excellent transmissions E′ ⊆ G′ ∪ I′
allow Alice to correctly recover the sequence of edges that

Bob has sent her so far. In all other cases, the conversion

of the received string to an edge sequence can produce

unpredictable results and cannot be trusted. This motivates

us to define the sets of bad transmissions for Alice and Bob

by B′ = (G′∪I′)\E′ and B′′ = (G′′∪I′′)\E′′, respectively. We

abbreviate B = B′ ∪B′′. As one might expect, the number of

bad transmissions is closely related to the number of attacks

by the adversary. This relation is formalized by the following

lemma, proved in the full version [11, Lem. 4.7].

Lemma 13. For any interval J with 1 ∈ J,

|B|J � 2

1 − α |D|J .

E. Virtual length

Key to our approach is a virtual view of communication

that centers around events rather than actual transmissions.

In particular, we focus on alternations in event addressee as

opposed to alternations in sender. To start with, we define

for an arbitrary set Z ⊆ R its virtual length by

|||Z||| = |G′ ∪ I′ ∪ D′|Z + |G′′ ∪ I′′ ∪ D′′|Z .
In other words, the virtual length |||Z||| is the number of trans-

missions in Z that have an event addressed to Alice, plus the

number of transmissions in Z that have an event addressed

to Bob. It follows immediately that |Z| � |||Z||| � 2|Z| for any

Z ⊆ {1, 2, . . . ,T }, and a moment’s thought reveals that the

lower and upper bounds can both be attained. The next three

lemmas establish key facts about virtual length; see the full

version [11, Lems. 4.9–4.11] for the proofs.

Lemma 14. The total virtual length of all transmissions
satisfies |||[1, T ]||| � 2N.

Lemma 15. Let i, j be given integers with i � j. Then

|||[i, j]||| � 4|D|[i, j]
δ
+ 1

248



for any 0 < δ � 1 such that

max{Δ(S ′[i, j],R′[i, j]), Δ(S ′′[i, j],R′′[i, j])} � δ.
Lemma 16. For any interval J,

|||J||| � 2(|B|J + |E′|J) + 1,

|||J||| � 2(|B|J + |E′′|J) + 1.

F. Virtual corruption rate

In keeping with our focus on events rather than trans-

missions, we define corr J = |D ∩ J|/|||J||| for any interval

J. We refer to this quantity as the virtual corruption rate
of J. The idea of normalizing the corruption rate relative to

execution length was previously used by Agrawal, Gelles,

and Sahai [13]. Our notion of virtual corruption rate is

somewhat more subtle in that it takes into account not only

the execution length but also the numbers of attacks of each

type. The next lemma shows that over the course of the

execution, the virtual corruption rate is relatively low; see

the full version [11, Lem. 4.12] for the proof.

Lemma 17. Assumptions (i) and (ii) in Theorem 9 imply
corr[1, T ] � 1

4
− ε and corr[1, T ] � 1

4
− ε

2
, respectively.

G. Finish times

Let e1, e2, . . . , en be the edges of the unique root-to-leaf

path in X ∪ Y, listed in increasing order of depth. For i =
1, 2, . . . , n, define fi to be the index of the first transmission

when ei is sent (whether or not that transmission is subject

to an attack). If ei is never sent, we define fi = ∞. For nota-

tional convenience, we also define f0 = f−1 = f−2 = · · · = 0.
Recall from the description of the interactive coding scheme

that Alice never sends an edge e unless she has previously

sent all proper predecessors of e in X, and analogously for

Bob. This gives f1 � f3 � f5 � · · · and f2 � f4 � f6 � · · · .
The overall sequence f1, f2, f3, f4, f5, f6, . . . need not be in

sorted order, however, due to interference by the adversary.

We abbreviate fi = max{0, f1, f2, . . . , fi}. By basic arithmetic,

[ fi−1, fi) = [ fi−1, fi), i = 1, 2, . . . , n. (5)

We now bound the virtual length of any such interval in

terms of the number of bad transmissions in it, thereby

showing that Alice and Bob make rapid progress as long

as they do not experience too many attacks.

Lemma 18. For any integers i and t with fi−1 � t < fi,

|||[ fi−1, t]||| � 2|B|[ fi−1,t]
+ 3. (6)

Proof. We will only treat the case of i odd; the proof

for even i can be obtained by swapping the roles of Alice

and Bob below.

Consider any transmission j ∈ E′ ∩ [ fi−1, fi). Lemma 12

ensures that on receipt of transmission j, Alice is able to

correctly recover the set of edges that Bob has sent her by

that time, which includes e2, e4, e6, . . . , ei−1. At that same

time, Alice has sent Bob e1, e3, e5, . . . , ei−2 but not ei, as

one can verify from j ∈ [ fi−1, fi). Therefore, the arrival of

transmission j causes Alice either to exit or to immediately

send ei. Either way, the interval [ fi−1, fi) does not contain

any transmissions numbered j + 1 or higher. We conclude

that there is at most one transmission in E′ ∩ [ fi−1, fi),
and in particular |E′|[ fi−1,t]

� 1. This upper bound directly

implies (6) in light of Lemma 16.

H. The progress lemma
We have reached the technical centerpiece of our analysis.

The result that we are about to prove shows that any

sufficiently long execution of the interactive coding scheme

with a sufficiently low virtual corruption rate allows Alice

and Bob to exchange all the n edges of the unique root-to-

leaf path in X∪Y, and moreover this progress is not “undone”

by any subsequent attacks by the adversary. The proof uses

amortized analysis in an essential way.

Lemma 19 (Progress lemma). Let t ∈ {1, 2, . . . ,T } be given
with

|||[1, t]||| � n + 2

α
, (7)

corr[1, t] �
1

4
− α. (8)

Then there is an integer t∗ � t such that

[ fn, t∗) ∩ E′ � ∅, (9)

[ fn, t∗) ∩ E′′ � ∅, (10)

Δ(S ′[i, t],R′[i, t]) < 1 − α, i = 1, 2, . . . , t∗, (11)

Δ(S ′′[i, t],R′′[i, t]) < 1 − α, i = 1, 2, . . . , t∗. (12)

Proof. Equations (11) and (12) hold vacuously for t∗ =
0. In what follows, we will take t∗ ∈ {0, 1, 2, . . . , t} to be the

largest integer for which (11) and (12) hold. For the sake

of contradiction, assume that at least one of the remaining

desiderata (9), (10) is violated, whence

|||[ fn, t∗)||| � 2|B|[ fn,t∗) + 1 (13)

by Lemma 16. The proof strategy is to show that (13) is

inconsistent with the hypothesis of the lemma. To this end,

let n∗ ∈ {0, 1, 2, . . . , n} be the largest integer such that fn∗ �
t∗. Then we have the partition

[0, t] = [ f0, f1)∪[ f1, f2)∪· · ·∪[ fn∗−1, fn∗ )∪[ fn∗ , t∗)∪{t∗}∪(t∗, t].

The bulk of our proof is concerned with bounding the virtual

length of each of the intervals on the right-hand side.
To begin with,

|||[ fi−1, fi)||| = |||[ fi−1, fi)|||
� 2|B|[ fi−1, fi)

+ 3

� 2|B|[ fi−1, fi)
+ 3 (14)

249



for any i = 1, 2, . . . , n∗, where the first and third steps use (5),

and the second step follows from Lemma 18. Next, the upper

bound

|||[ fn∗ , t∗)||| � 2|B|[ fn∗ ,t∗) + 3 (15)

follows from Lemma 18 if n∗ < n and from (13) if n∗ =
n. The virtual length of the singleton interval {t∗} can be

bounded from first principles:

|||{t∗}||| � 2. (16)

Finally, recall from the definition of t∗ that either

max{Δ(S ′[t∗+1, t],R′[t∗+1, t]), Δ(S ′′[t∗+1, t],R′′[t∗+1, t])} �
1 − α or t∗ = t, leading to

|||(t∗, t]||| � 4

1 − α |D|(t∗,t] + 1 (17)

by Lemma 15 in the former case and trivially in the latter.

Putting everything together, we obtain

|||[1, t]||| � 2|B|[0,t∗) + 3(n∗ + 1) + 2 +
4

1 − α |D|(t∗,t] + 1

�
4

1 − α |D|[0,t∗) + 3(n∗ + 1) + 2 +
4

1 − α |D|(t∗,t] + 1

�
4

1 − α |D|[0,t] + 3n + 6

�
4

1 − α |D|[0,t] + 3α|||[1, t]|||, (18)

where the first step is the result of adding (14)–(17), the

second step applies Lemma 13, and the final step uses (7).

Since 0 < α < 1, the conclusion of (18) is equivalent to

corr[1, t] �
(1 − 3α)(1 − α)

4
,

which is inconsistent with (8). We have obtained the desired

contradiction and thereby proved that t∗ satisfies each of the

properties (9)–(12).

I. Finishing the proof

We have reached a “master theorem,” which gives a

sufficient condition for Alice and Bob to assign the correct

value to their corresponding copies of the out variable. Once

established, this result will allow us to easily finish the proof

of Theorem 9.

Theorem 20. Consider a point in time when Alice updates
her out variable, and fix a corresponding integer t � T such
that  ∗(R′[1, t]) is the complete sequence of symbols that Alice
has received by that time. Assume that

|||[1, t]||| � n + 2

α
, (19)

corr[1, t] �
1

4
− α. (20)

Then as a result of the update, out is assigned the leaf
vertex in the unique root-to-leaf path in X∪Y. An analogous
theorem holds for Bob.

Proof. We will only prove the claim for Alice; the

proof of Bob is entirely analogous. Lemma 19 implies the

existence of j′ ∈ E′ and j′′ ∈ E′′ such that

fn � j′ < t, (21)

fn � j′′ < t, (22)

Δ(S ′[ j′ + 1, t],R′[ j′ + 1, t]) < 1 − α, (23)

Δ(S ′′[ j′′ + 1, t],R′′[ j′′ + 1, t]) < 1 − α. (24)

By the definition of E′ and E′′,

SD(S ′[1, j′],R′[1, j′]) < 1 − α, (25)

SD(S ′′[1, j′′],R′′[1, j′′]) < 1 − α. (26)

As a result,

SD∗(S ′[1, j′])(S ′[1, t],R′[1, t])
= SD∗(S ′[1, j′])(S ′[1, j′]S ′[ j′ + 1, t], R′[1, j′]R′[ j′ + 1, t])

� max{SD∗(S ′[1, j′])(S ′[1, j′],R′[1, j′]),
Δ(S ′[ j′ + 1, t],R′[ j′ + 1, t])}

� max{SD(S ′[1, j′],R′[1, j′]), Δ(S ′[ j′ + 1, t],R′[ j′ + 1, t])}
< 1 − α, (27)

where the second step is valid by Proposition 3 (iv), the

third step uses (1), and the final step is immediate from (23)

and (25).

When Alice updates her out variable, the sequence of

symbols that she has received is  ∗(R′[1, t]). By (27) and

Theorem 7, DecodeC,α( ∗(R′[1, t])) � ( ∗(S ′[1, t]))�∗(S ′[1, j′]) =

 ∗(S ′[1, j′]). Therefore, just prior to updating out, Alice

is able to correctly recover the prefix  ∗(S ′[1, j′]) of the

sequence of symbols sent to her by Bob. By Lemma 11,

this means that she correctly recovers the complete set of

edges encoded by the string  ∗(S ′[1, j′]). By (21), this prefix

 ∗(S ′[1, j′]) contains the encoding of every edge of Y that

appears in the root-to-leaf path in X ∪ Y . Moreover, every

edge encoded in  ∗(S ′[1, j′]) is correct in that it is an element

of Y . Alice’s pseudocode now ensures that she assigns to out
the leaf vertex on the unique root-to-leaf path in X ∪ Y.

The proof for Bob is entirely analogous, with (22), (24),

(26), and j′′ playing the role of (21), (23), (25), and j′,
respectively.

We are now in a position to establish the main result of

this section.

Proof of Theorem 9. Recall that n = |π| denotes the

communication cost of the original protocol, and ε > 0

is a constant in the statement of Theorem 9. Consider the

interactive coding scheme given by Figures 2 and 3, with

parameters set according to

α =
ε

4
, (28)

N =
⌈
n + 4

2α

⌉
. (29)

250



By (3), the coding scheme uses an alphabet of size at most

(|Σ| · n/ε)O(1/ε) = O(|Σ| · n)O(1) = O(|Σ| · |π|)O(1). Furthermore,

by (4), the combined number of transmissions sent by Alice

and Bob does not exceed 2N = O(n) = O(|π|).
It remains to show that when the communication stops,

out is set for both Alice and Bob to the leaf vertex on the

unique root-to-leaf path in X∪Y. To this end, note from (28)

and Lemma 17 that

corr[1,T ] �
1

4
− 2α. (30)

By (29) and Lemma 14,

|||[1, T ]||| > n + 4

α
(31)

and therefore

|||[1, T − 1]||| > n + 2

α
. (32)

Also,

corr[1, T − 1] �
|||[1, T ]|||

|||[1, T − 1]||| · corr[1, T ]

�
(
1 +

2

|||[1, T − 1]|||
)
· corr[1, T ]

�
(
1 +

2α

n + 2

)
·
(

1

4
− 2α

)

�
1

4
− α, (33)

where the third step uses (30) and (32). Now, consider the

last time that Alice and Bob update their copies of out. The

complete sequence of symbols that Alice has received at

the time of her last update is  ∗(R′[1, T − 1]) or  ∗(R′[1, T ]).

Likewise, the complete sequence of symbols that Bob has

received at the time of his last update is  ∗(R′′[1, T − 1]) or

 ∗(R′′[1, T ]). By (30)–(33) and Theorem 20, both players set

out to the leaf vertex in the unique root-to-leaf path in X∪Y.
This completes the proof of Theorem 9.

IV. A coding scheme with a constant-size alphabet

In the full version of this paper, we adapt the proof

of Theorem 9 to use an alphabet of constant size. This

modification yields the main result of our work, which we

restate here for the reader’s convenience.

Theorem 21. Fix an arbitrary constant ε > 0, and let π be
an arbitrary protocol with alphabet Σ. Then there exists an
interactive coding scheme for π with alphabet size O(1) and
communication cost O(|π| log |Σ|) that tolerates

(i) corruption rate 1
4
− ε;

(ii) any normalized corruption rate (εsubs, εoos) with εsubs +
3
4
εoos � 1

4
− ε.

At a high level, our proof of Theorem 21 is similar to the

proof of Theorem 9 in the previous section, and we are

able to reuse most of the auxiliary machinery developed

there. The principal point of departure is a new way of

encoding and transferring edges, which in turn requires

subtle modifications to the amortized analysis.

Acknowledgments

The first author was supported in part by NSF CAREER

award CCF-1149018 and an Alfred P. Sloan Foundation

Research Fellowship. The second author was supported in

part by NSF CAREER award CCF-1149018. The authors

are thankful to Mark Braverman, Rafail Ostrovsky, and

the anonymous reviewers of FOCS 2017 for their valuable

feedback on an earlier version of this manuscript.

References

[1] C. E. Shannon, “A mathematical theory of communication,”
The Bell System Technical Journal, vol. 27, no. 3, pp. 379–
423, July 1948.

[2] ——, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 4, pp. 623–656, Octo-
ber 1948.

[3] J. Justesen, “Class of constructive asymptotically good alge-
braic codes,” IEEE Trans. Information Theory, vol. 18, no. 5,
pp. 652–656, 1972.

[4] L. J. Schulman, “Communication on noisy channels: A coding
theorem for computation,” in FOCS, 1992, pp. 724–733.

[5] ——, “Deterministic coding for interactive communication,”
in STOC, 1993, pp. 747–756.

[6] ——, “Coding for interactive communication,” IEEE Trans.
Information Theory, vol. 42, no. 6, pp. 1745–1756, 1996.

[7] R. Gelles, “Coding for interactive communication: A survey,”
2015, available at http://www.eng.biu.ac.il/∼gellesr/survey.
pdf.

[8] M. Braverman and A. Rao, “Toward coding for maximum er-
rors in interactive communication,” IEEE Trans. Information
Theory, vol. 60, no. 11, pp. 7248–7255, 2014.

[9] M. Braverman, R. Gelles, J. Mao, and R. Ostrovsky, “Cod-
ing for interactive communication correcting insertions and
deletions,” in ICALP, 2016, pp. 61:1–61:14.

[10] L. J. Schulman and D. Zuckerman, “Asymptotically good
codes correcting insertions, deletions, and transpositions,”
IEEE Trans. Information Theory, vol. 45, no. 7, pp. 2552–
2557, 1999.

[11] A. A. Sherstov and P. Wu, “Optimal interactive coding for
insertions, deletions, and substitutions,” in Electronic Col-
loquium on Computational Complexity (ECCC), May 2017,
report TR17-079.

[12] V. I. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions, and reversals,” Soviet Physics Doklady,
vol. 10, no. 8, pp. 707–710, 1966.

[13] S. Agrawal, R. Gelles, and A. Sahai, “Adaptive protocols for
interactive communication,” in ISIT, 2016, pp. 595–599.

251


