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Abstract—The repair problem for an pn, kq error-correcting
code calls for recovery of an unavailable coordinate of the
codeword by downloading as little information as possible from
a subset of the remaining coordinates. Using the terminology
motivated by coding in distributed storage, we attempt to repair
a failed node by accessing information stored on d helper nodes,
where k ď d ď n ´ 1, and using as little repair bandwidth as
possible to recover the lost information.

By the so-called cut-set bound (Dimakis et al., 2010), the
repair bandwidth of an pn, k “ n ´ rq MDS code using d
helper nodes is at least dl{pd ` 1 ´ kq, where l is the size of
the node. A number of constructions of MDS array codes have
been shown to meet this bound with equality. In a related
but separate line of work, Guruswami and Wootters (2016)
studied repair of Reed-Solomon (RS) codes, showing that it
is possible to perform repair using a smaller bandwidth than
under the trivial approach. At the same time, their work as
well as follow-up papers stopped short of constructing RS codes
(or any scalar MDS codes) that meet the cut-set bound with
equality, which has been an open problem in coding theory.

In this work we present a solution to this problem, con-
structing RS codes of length n over the field of size ql, l “
exppp1 ` op1qqn lognq that meet the cut-set bound. We also
prove an almost matching lower bound on l, showing that
super-exponential scaling is both necessary and sufficient for
achieving the cut-set bound using linear repair schemes. More
precisely, we prove that for scalar MDS codes (including the
RS codes) to meet this bound, the sub-packetization l must
satisfy l ě exppp1` op1qqk log kq.

Keywords-Cut-set bound; Optimal sub-packetization; Repair
bandwidth.

I. INTRODUCTION

A. Minimum Storage Regenerating codes and optimal repair
bandwidth

The amount of information produced has grown exponen-
tially over the last decade, and large-scale storage systems
are widely used to store the data. The problem that we
consider is motivated by applications of codes in distributed
storage wherein the data is written on a large number of
physical storage nodes. Failure of an individual node renders
a portion of the data inaccessible, and erasure-correcting
codes are used to increase the reliability of the system. The
repair task performed by the system relies on communication
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between individual nodes, and introduces new challenges in
the code design. In particular, a new parameter that has a
bearing on the overall efficiency of the system is the amount
of data sent between the nodes in the process of repair.

To protect the information, we divide the original file
into k information blocks and view each block as a single
element of a finite field F or a vector over F . We encode
the data by adding r “ n ´ k parity blocks (field symbols
or vectors) and distributing the resulting n blocks across n
storage nodes. In this paper we deal only with linear codes,
so the parity blocks are formed as linear combinations of
the information blocks over F. We use the notation pn, kq
to refer to the length and dimension of a linear code. A well-
known class of linear pn, kq Maximum Distance Separable
(MDS) codes studied in this paper, has the favorable prop-
erty that the original file can be recovered from the content
stored on any k nodes, which provides the optimal tradeoff
between failure tolerance and storage overhead.

Before proceeding further, we make a brief remark on
the terminology used in the literature devoted to erasure
correcting codes for distributed storage. The coordinates of
the codeword are assumed to be stored on different nodes,
and by extension are themselves referred to as nodes. In
practice, single node failure is the most common scenario
[1, Section 6.6], so we will be interested in the problem
of designing codes that efficiently correct (repair) a single
erasure (failed node). We assume that the data is encoded
with a code C over a finite field F wherein each coordinate of
the codeword is either an element of F or an l-dimensional
vector over F , where l ą 1. The latter construction, termed
array codes, turns out to be better suited to the needs of
the repair problem, as will be apparent in the later part of
this section. To repair a failed node, the system needs to
download the contents from some other nodes (helper nodes)
of the codeword to the processor, and the total amount of
the downloaded data is called the repair bandwidth. Coding
solutions that support efficient repair are called regenerating
codes, and they have been a focal point of current research
in coding theory following their introduction in [2].

A traditional solution to recover a single node failure in
an MDS-coded system is to download the content stored
on any k nodes. The MDS property guarantees that we can
recover the whole file, so we can also recover any single
node failure. However, this method is far from efficient in
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the sense that the repair bandwidth that it requires is much
larger than is needed for the repair of a single node. Indeed,
by a rather counter-intuitive result of [2] it is possible to
save on the repair bandwidth by contacting d ą k helper
nodes, and the maximum savings are attained when d is the
largest possible value, namely d “ n´ 1.

More specifically, suppose that an pn, kq MDS-coded
system attempts to repair a failed node by connecting to d
helper nodes. In this case, as shown in [2], the total amount
of information that needs to be downloaded to complete the
repair task is at least dl{pd`1´kq, where l is the size of each
node. This lower bound on the repair bandwidth is called the
cut-set bound since it is obtained from the cut-set bound in
network information theory [3]. Given k ă d ď n ´ 1, an
pn, kq MDS code achieving the cut-set bound for the repair
of any single failed node from any d helper nodes is called
an pn, kq minimum storage regenerating (MSR) code with
repair degree d [2].

The definition of MSR codes, given above in an informal
way, will be formalized for a particular subclass of codes
known as MDS array codes. An pn, kq MDS array code C
with sub-packetization l over a finite field F is formed of
k information nodes and r “ n ´ k parity nodes, where
every node is a column vector of length l over F (so
dimF pCq “ kl). The MDS property requires that any k
nodes of C suffice to recover the remaining r nodes of the
codeword. Array codes are also called vector codes, while
code families more common to coding theory (such as Reed-
Solomon (RS) codes and others) are called scalar codes in
the literature. Clearly, scalar codes correspond to the case
l “ 1 of the above definition.

Definition 1 (Repair bandwidth). Let C be an pn, kq MDS
array code with sub-packetization l over a finite field F .
We write a codeword of C as c “ pc1, . . . , cnq. For i P
t1, . . . , nu and R Ď rnsztiu of cardinality |R| ě k, define
NpC, i,Rq as the smallest number of symbols of F one needs
to download from the set of helper nodes tcj : j P Ru in
order to repair the failed node ci. The repair bandwidth of
the code C with d helper nodes equals

max
iPrns

max
RĎrnsztiu,|R|“d

NpC, i,Rq.

We note that the symbols downloaded to repair the node
ci can be some functions of the contents of the helper nodes
tcj , j P Ru.
Definition 2 (Cut-set bound [2]). Let C be an pn, kq MDS
array code with sub-packetization l and let k ď d ď n´ 1.
For any i P rns and any subset R Ď rnsztiu of size d we
have the following inequality:

NpC, i,Rq ě dl

d` 1´ k . (1)

An pn, kq MDS array code with sub-packetization l achiev-
ing the cut-set bound (1) for the repair of any single failed
node from any d helper nodes is called an pn, k, d, lq MSR
array code.

Several constructions of MSR codes are available in
the literature: See [4]–[8] for the high-rate regime where
k ą n{2, and [9] for the low-rate regime where k ď n{2.
Recently the concept of repair bandwidth was extended in
[10] to the problem of correcting errors; this paper also
presented explicit code constructions that support error cor-
rection under the minimum possible amount of information
downloaded during the decoding process.

Due to the limited storage capacity of each node, we
would like the sub-packetization l to be as small as possible.
However, it is shown in [11] that for an pn, k, d “ n´ 1, lq
MSR array code, l ě exppak{p2r ´ 1qq (i.e., l is exponen-
tial in n for fixed r and growing n).

B. Repair schemes for scalar linear MDS codes

While there has been much research into constructions
and properties of MSR codes specifically designed for the
repair task, it is also of interest to study the repair bandwidth
of general families of MDS codes, for instance, RS codes. In
[12], Shanmugam et al. proposed a framework for studying
the repair bandwidth of a scalar linear pn, kq MDS code C
over some finite field E (called the symbol field below).
The idea of [12] is to “vectorize” the code construction by
considering C as an array code over some subfield F of E.
This approach provides a bridge between RS codes and MDS
array codes, wherein the extension degree l :“ rE : F s can
be viewed as the value of sub-packetization. The code C is
viewed as an pn, kq MDS array code with sub-packetization
l, and the repair bandwidth is defined exactly in the same
way as above. The cut-set bound (1) and the definition of
MSR codes also apply to this setup.

In this paper we study repair of RS codes, focusing on lin-
ear repair schemes, i.e., we assume that the repair operations
are linear over the field F. Guruswami and Wootters [13]
gave a characterization for linear repair schemes of scalar
linear MDS codes based on the framework in [12]. We will
use this characterization to prove one of our main results,
namely, a lower bound on the sub-packetization, so we recall
it below. Let us start with the definition of the dual code.

Definition 3 (Dual code). The dual code of a linear code
C Ď En is the linear subspace of En defined by

CK “ �
x “ px1, . . . , xnq P En

ˇ̌ nÿ
i“1

xici “ 0

@c “ pc1, . . . , cnq P C
(
.

In the next theorem E is the degree-l extension of the field
F . Viewing E as an l-dimensional vector space over F , we
use the notation dimF pa1, a2, . . . , atq to refer to the dimen-
sion of the subspace spanned by the set ta1, a2, . . . , atu Ă E
over F .

We will need a result from [13] which we state in the
form that is suited to our needs.

Theorem 1 ([13]). Let C Ď En be a scalar linear MDS
code of length n. Let F be a subfield of E such that rE :
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F s “ l. For a given i P t1, . . . , nu the following statements
are equivalent.
(1) There is a linear repair scheme of the node ci over F

such that the repair bandwidth NpC, i, rnsztiuq ď b.
(2) There is a subset of codewords Pi Ď CK with size |Pi| “

l such that

dimF ptxi : x P Piuq “ l,

and
b ě

ÿ
jPrnsztiu

dimF ptxj : x P Piuq.

In addition to this general linear repair scheme for scalar
linear MDS codes, the authors of [13] also presented a
specific repair scheme for a family of RS codes and further
proved that (in some cases) the repair bandwidth of RS
codes using this scheme is the smallest possible among
all linear repair schemes and all scalar linear MDS codes
with the same parameters. At the same time, the approach
of [13] has some limitations. Namely, their repair scheme
applies only for small sub-packetization l “ logn{r n,
and the optimality claim only holds for this specific sub-
packetization value. At the same time, in order to achieve
the cut-set bound, l needs to be exponentially large in n for a
fixed value of r [11], so the repair bandwidth of this scheme
is rather far from the bound. Subsequently, two of the present
authors [14] used the general linear repair scheme in [13] to
construct an explicit family of RS codes with asymptotically
optimal repair bandwidth: the ratio between the actual repair
bandwidth of the codes and the cut-set bound approaches 1
as the code length n goes to infinity.

In [13], there is one more restriction on the parameters
of the RS codes, namely they achieve the smallest possible
repair bandwidth only if the number of parities is of the form
r “ qs, pl ´ sq|l. In [15], Dau and Milenkovic generalized
the scheme in [13] and extended their results to all values
of s “ 1, . . . , l´ 1. The repair bandwidth attained in [15] is
pn´ 1qpl´ sq symbols of F for r ě qs, and is the smallest
possible whenever r is a power of q. In [16], Dau et al.
extended the results of [13] to repair of multiple erasures.

To summarize the earlier work, constructions of RS codes
(or any scalar MDS codes) that meet the cut-set bound have
as yet been unknown, so the existence question of such codes
has been an open problem. In this paper, we resolve this
problem in the affirmative, presenting such a construction.
We also prove a lower bound on the sub-packetization of
scalar linear MDS codes that attain the cut-set bound with
a linear repair scheme, showing that there is a penalty for
the scalar case compared to MDS array codes.

C. Our Results
(1) Explicit constructions of RS codes achieving the cut-

set bound: Given any n, k and d, k ď d ď n ´ 1, we
construct an pn, kq RS code over the field E “ Fql that
achieves the cut-set bound (1) when repairing any single
failed node from any d helper nodes. As above, we view
RS codes over E as vector codes over the subfield F “

Fq . The main novelty in our construction is the choice of
the evaluation points for the code in such a way that their
over F are distinct primes. As a result, the symbol field
is an extension field of F with degree no smaller than
the product of these distinct primes. For the actual repair
we rely on the linear scheme proposed in [13] (this is
essentially the only possible linear repair approach).
The value of sub-packetization l of our construction
equals s times the product of the first n distinct primes
in an arithmetic progression,

l “ s
nź

i“1
pi”1 mod s

pi,

where s :“ d ` 1 ´ k. This product is a well-studied
function in number theory, related to a classical arith-
metic function ψpn, s, aq (which is essentially the sum
of logarithms of the primes). The prime number theorem
in arithmetic progressions (for instance, [17, p.121])
yields asymptotic estimates for l. In particular, for fixed
s and large n, we have l “ ep1`op1qqn logn.
In contrast, for the case d “ n´1 (i.e., s “ r “ n´k),
there exist MSR array codes that attain sub-packetization
l “ rrn{pr`1qs [18], which is the smallest known value
among MSR codes1. So although this distinct prime
structure allows us to achieve the cut-set bound, it makes
us pay a penalty on the sub-packetization.

(2) A lower bound on the sub-packetization of scalar
MDS codes achieving the cut-set bound: Surprisingly,
we also show that the distinct prime structure discussed
above is necessary for any scalar linear MDS code (not
just the RS codes) to achieve the cut-set bound under
linear repair. Namely, given d such that k ` 1 ď d ď
n ´ 1, we prove that for any pn, kq scalar linear MSR
code with repair degree d, the sub-packetization l is

bounded below by l ě śk´1
i“1 pi, where pi is the i-th

smallest prime. By the Prime Number Theorem [17],
we obtain the lower asymptotic bound on l of the form
l ě ep1`op1qqk log k.

(3) Main result: In summary, we obtain the following
results for the smallest possible sub-packetization of
scalar linear MDS codes, including the RS codes, whose
repair bandwidth achieves the cut-set bound.

Theorem 2. Let C be an pn, k “ n ´ rq scalar linear
MDS code over the field E “ Fql , and let d be an
integer satisfying k ` 1 ď d ď n ´ 1. Suppose that
for any single failed node of C and any d helper nodes
there is a linear repair scheme over Fq that uses the
bandwidth dl{pd`1´kq symbols of Fq , i.e., it achieves
the cut-set bound (1). For a fixed s “ d ` 1 ´ k and

1The construction of [18] achieves the cut-set bound only for repair of
systematic nodes, and gives l “ rrk{pr`1qs. Using the approach of [4], it
is possible to modify the construction of [18] and to obtain an MSR code
with l “ rrn{pr`1qs.
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Table I: Tradeoff between repair bandwidth and sub-packetization

Code construction Repair bandwidth sub-packetization achieving cut-set bound

Array codes

pn, k “ n´ r, n´ 1, lq
MSR array codes for
2k ď pn` 1q, [9]

pn´1ql
r l “ r Yes

pn, k, n´ 1, lq
MSR array codes

(a modification of [18])

pn´1ql
r l “ rrn{pr`1qs Yes

pn, k, n´ 1, lq MSR
array codes [5]

pn´1ql
r l “ rrn{rs Yes

pn, kq MDS
array codes with design

parameter t ě 1 [19]
p1` 1

t q pn´1ql
r l “ rt No

Scalar codes

pn, kq RS code [14] ă pn`1ql
r l “ rn No

pn, kq RS code [13] n´ 1 l “ logn{r n No

pn, kq RS code [15] pn´ 1qlp1´ logn rq logq n No

pn, kq RS code
(this paper)

pn´1ql
r l « nn Yes

n, k Ñ8 the following bounds on the smallest possible
sub-packetization hold true:

ep1`op1qqk log k ď l ď ep1`op1qqn logn. (2)

For large s, we have l ď s
nś

i:pi”1 mod s

pi, where the

product goes over the first n distinct primes in the
arithmetic progression.
Remark 1. The upper bound on l can be made more
explicit even for large s, and the answer depends on
whether we accept the Generalized Riemann Hypothesis
(if yes, we can still claim the bound l ď exppp1 `
op1qqn log nq).

(4) Discussion: Array codes and scalar codes The lower
bound in (2) is much larger than the sub-packetization
of many known MSR array code constructions. To make
the comparison between the repair parameters of scalar
codes and array codes more clear, we summarize the
tradeoff between the repair bandwidth and the sub-
packetization of some known MDS code constructions
in Table I. We only list papers considering the repair of
a single node from all the remaining n´1 helper nodes.
Moreover, in the table we limit ourselves to explicit code
constructions, and do not list multiple existence results
that appeared in recent years.
As discussed earlier, the constructions of [13], [15] have
optimal repair bandwidth among all the RS codes with
the same sub-packetization value as in these papers2.

2Expressing the sub-packetization of the construction in [15] via n and
r is difficult. The precise form of the result in [15] is as follows: for every
s ă l and r ě qs, the authors construct repair schemes of RS codes
of length n “ ql with repair bandwidth pn ´ 1qpl ´ sq. Moreover, if
r “ qs, then the schemes proposed in [15] achieve the smallest possible
repair bandwidth for codes with these parameters.

At the same time, these values are too small for the
constructions of [13], [15] to achieve the cut-set bound.
From the first three rows of the table one can clearly see
that the achievable sub-packetization values for MSR
array codes are much smaller than the lower bound for
scalar linear MSR codes derived in this paper. This is
to be expected since for array codes we only require the
code to be linear over the “repair field,” i.e., F , and not
the symbol field E as in the case of scalar codes.

D. Organization of the paper

In Sec. II, we present a simple construction of RS codes
that achieve the cut-set bound for some of the nodes. This
construction is inferior to the more involved construction of
Sec. III, but simple to follow, and already contains some of
the main ideas of the later part, so we include it as a warm-
up for the later results. In Sec. III, we present our main
construction of RS codes that achieve the cut-set bound for
the repair of any single node, proving the upper estimate
in (2). In Sec. IV, we prove the lower bound on the sub-
packetization of scalar linear MSR codes, finishing the proof
of (2).

II. A SIMPLE CONSTRUCTION

In this section we present a simple construction of RS
codes that achieve the cut-set bound for the repair of certain
nodes. We note that any pn, kq MDS code trivially allows
repair that achieves the cut-set bound for d “ k. We say
that a node in an MDS code has a nontrivial optimal repair
scheme if for a given d ą k it is possible to repair this node
from any d helper nodes with repair bandwidth achieving the
cut-set bound. The code family presented in this section is
different from standard MSR codes in the sense that although
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the repair bandwidth of our construction achieves the cut-
set bound, the number of helper nodes depends on the node
being repaired.

Let us first recall the definition of (generalized) Reed-
Solomon codes.

Definition 4. A Generalized Reed-Solomon code
GRSF pn, k,Ω, vq Ď Fn of dimension k over F with
evaluation points Ω “ tω1, ω2, . . . , ωnu Ď F is the set of
vectors

tpv1fpω1q, . . . , vnfpωnqq P Fn : f P F rxs, deg f ď k ´ 1u
where v “ pv1, . . . , vnq P pF˚qn are some nonzero elements.
If v “ p1, . . . , 1q, then the GRS code is called a Reed-
Solomon code and is denoted as RSF pn, k,Ωq.

It is well known [20, p.304] that

pRSF pn, k,ΩqqK “ GRSF pn, n´ k,Ω, vq (3)

where vi “ś
j‰ipωi´ωjq´1, i “ 1, . . . , n. (The dual of an

RS code is a GRS code.)

Denote by πptq the number of primes less than or equal
to t. Let F be a finite field and let E be the extension of F
of degree t. The trace function trE{F : E Ñ F is defined
by

trE{F pxq :“ x` x|F | ` x|F |2 ` ¨ ¨ ¨ ` x|F |t´1

.

In the next theorem we construct a special subfamily of
RS codes. Our construction enables nontrivial repair of πprq
nodes, which without loss of generality we take to be nodes
1, 2, . . . , πprq. Let di, i “ 1, 2, . . . , πprq be the number of
helper nodes used to repair the i-th node. We will take di “
pi ` k ´ 1, where pi is the i-th smallest prime number.
The repair scheme presented below supports repair of node
i by connecting to any di helper nodes and downloading
a 1

pi
-th proportion of information stored at each of these

nodes. Since pi “ di ´ k ` 1, this justifies the claim of
achieving the cut-set bound for repair of a single node.

Theorem 3. Let n ě k be two positive integers, and let
r “ n ´ k. There exists an pn, kq RS code over a field E
such that πprq of its coordinates admit nontrivial optimal
repair schemes.

Proof: Let m :“ πprq and let q ě n ´m be a prime
power. Let E be the

`śm
i“1 pi

˘
-th degree extension of the

finite field Fq .
Let αi, i “ 1, . . . ,m be an element of order pi over Fq, so

that Fqpi “ Fqpαiq, where Fqpαiq denotes the field obtained
by adjoining αi to Fq. It is clear that E “ Fqpα1, . . . , αmq.
Define m subfields Fi of E by setting

Fi “ Fqpαj : j ‰ iq,
so that E “ Fipαiq and rE : Fis “ pi, i “ 1, . . . ,m. Let
αm`1, . . . , αn P Fq be arbitrary n´m distinct elements of
the field, and let Ω “ tα1, α2, . . . , αnu.

Let C “ RSEpn, k,Ωq be the RS code of dimension k
with evaluation points Ω and let CK be its dual code. We

claim that for i “ 1, 2, . . . ,m, the i-th coordinate (node)
of C can be optimally repaired from any di helper nodes,
where

di “ pi ` k ´ 1.

Let i P t1, 2, . . . ,mu and let us show how to repair the ith
node. Choose a subset of helper nodes Ri Ď rnsztiu, |Ri| “
di, and note that since pi ď r, we have di ď n ´ 1. Let
hpxq be the annihilator polynomial of the set tαj : j P
rnszpRi Y tiuqu, i.e.,

hpxq “
ź

jPrnszpRiYtiuq
px´ αjq. (4)

Since degphpxqq “ n´k´pi, we have degpxshpxqq ă r for
all s “ 0, 1, . . . , pi´1. As a result, for all s “ 0, . . . , pi´1,
the vector

pv1αs
1hpα1q, . . . , vnαs

nhpαnqq P CK, (5)

cf. (3). Let c “ pc1, . . . , cnq P C be a codeword. By (5) we
have

nÿ
j“1

vjhpαjqαs
jcj “ 0, s “ 0, . . . , pi ´ 1.

Let tri :“ trE{Fi
denote the trace from E to Fi. We have

nÿ
j“1

tripvjhpαjqαs
jcjq “ 0, s “ 0, . . . , pi ´ 1.

Equivalently, we can write for each s “ 0, . . . , pi ´ 1

tripvihpαiqαs
i ciq “ ´

ÿ
j‰i

tripvjhpαjqαs
jcjq

“ ´
ÿ
jPRi

tripvjhpαjqαs
jcjq

“ ´
ÿ
jPRi

αs
j tripvjhpαjqcjq, (6)

where the second equality follows from (4) and the third
follows because αj P Fi for all j ‰ i and tri is an Fi-linear
map.

The information used to recover the value ci (to repair
the ith node) is comprised of the following di elements of
Fi :

tripvjhpαjqcjq, j P Ri.

Let us show that these elements indeed suffice. First, by
(6), given these elements, we can calculate the values of
tripvihpαiqαs

i ciq for all s “ 0, . . . , pi ´ 1. The mapping

E Ñ F pi

i

γ ÞÑ `
tri

`
vihpαiqγ

˘
, tri

`
vihpαiqαiγ

˘
, . . . ,

tri
`
vihpαiqαpi´1

i γ
˘˘

is in fact a bijection, which can be realized as
follows. Since the set t1, αi, . . . , α

pi´1
i u forms a

basis of E over Fi and vihpαiq ‰ 0, the set

tvihpαiq, vihpαiqαi, . . . , vihpαiqαpi´1
i u also forms a
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basis. Let tθ0, θ1, . . . , θpi´1u be the dual basis of

tvihpαiq, vihpαiqαi, . . . , vihpαiqαpi´1
i u, i.e.,

tripvihpαiqαs
i θjq “

"
0 if s ‰ j,

1 if s “ j
@s, j P t0, 1, . . . , pi´1u.

The value ci can now be found as follows:

ci “
pi´1ÿ
s“0

tripvihpαiqαs
i ciqθs

(this is the essence of the repair scheme proposed in [13]).
The presented arguments constitute a linear repair scheme

of the node ci, i “ 1, . . .m over Fi. The information
downloaded from each of the helper nodes consists of one
element of Fi, or, in other words, the p1{piqth proportion
of the contents of each node. This shows that node i admits
nontrivial optimal repair. The proof is thereby complete.

Example 1. Take q “ 5, k “ 3, r “ 5. We have πprq “ 3
and p1 “ 2, p2 “ 3, p3 “ 5. Let us construct an p8, 3q
RS code over the field E “ F530 , where the first 3 nodes
admit nontrivial optimal repair schemes. Let α be a primitive
element of E. Choose the set Ω “ tα1, . . . , α8u as follows:

α1 “ α
530´1

52´1 , α2 “ α
530´1

53´1 , α3 “ α
530´1

55´1 ,

α4 “ 0, α5 “ 1, α6 “ 2, α7 “ 3, α8 “ 4.

The number of helper nodes for the first 3 nodes is
pd1, d2, d3q “ p4, 5, 7q. It is easy to verify that for any subset
A Ď t1, 2, 3u

F5pαi : i P Aq “ Fm
A
, where m

A
“ 5p

ś
iPA piq.

The code C constructed in the above proof is given by
C “ RSEp8, 3,Ωq. Let us address the task of repairing c3
from all the remaining 7 helper nodes with repair bandwidth
achieving the cut-set bound. Let CK “ GRSEp8, 5,Ω, vq,
where v “ pv1, . . . , v8q P pE˚q8. We download the value
trE{F56

pvjcjq from each helper node cj , j ‰ 3. Since rE :
F56s “ p3, this amounts to downloading exactly a 1{p3 “
p1{5q-th fraction of the information stored at each helper
node, which achieves the cut-set bound. The value of c3
can be found from the downloaded information using the
following 5 equations:

trE{F56
pαs

3v3c3q “ ´
ÿ
j‰3

trE{F56
pαs

jvjcjq

“ ´
ÿ
j‰3

αs
j trE{F56

pvjcjq, s “ 0, . . . , 4.

Indeed, the downloaded symbols suffice to recover the vector
ptrE{F56

pαs
3v3c3q, s “ 0, . . . , 4q, and therefore also suffice to

repair the symbol c3.

III. A FAMILY OF RS CODES ACHIEVING THE CUT-SET

BOUND

In this section we develop the ideas discussed above
and construct RS codes achieving the cut-set bound with
nontrivial optimal repair of all nodes. More precisely, given

any positive integers k ă d ď n´ 1, we explicitly construct
an pn, kq RS code C achieving the cut-set bound for the
repair of any single node from any d helper nodes. In other
words, C is an pn, kq MSR code with repair degree d.

Let Fp be a finite field of prime order (for simplicity we
can take p “ 2). Denote s :“ d ´ k ` 1 and let p1, . . . , pn
be n distinct primes such that

pi ” 1 mod s for all i “ 1, 2, . . . , n. (7)

According to Dirichlet’s theorem, there are infinitely many
such primes. For i “ 1, . . . , n, let αi be an element of degree
pi over Fp, i.e., rFppαiq : Fps “ pi, and define

F :“ Fppα1, . . . , αnq. (8)

Note that for any subset of indices A Ď rns, the field
Fpptαi : i P Auq is an extension of Fp of degree

ś
iPA pi,

and in particular, F has degree
śn

i“1 pi over Fp. Next, we
define n distinct subfields Fi of the field F and one extension
field K of F.

1) For i “ 1, . . . , n, define Fi “ Fpptαj : j ‰ iuq. Note
that F “ Fipαiq and rF : Fis “ pi.

2) The field K is defined to be the degree-s extension
of the field F, i.e. there exists an element β P K of
degree s over F such that K “ Fpβq. We also have
rK : Fis “ spi for all i.

We are ready to construct a family of RS codes that can be
optimally repaired for each node. The set α1, . . . , αn serves
as the set of evaluation points of the code.

The following theorem is the main result of this section.

Theorem 4. Let k, n, d be any positive integers such that
k ă d ă n. Let Ω “ tα1, . . . , αnu, where αi, i “ 1, . . . , n
is an element of degree pi over Fp and pi is the ith
smallest prime that satisfies (7). The code C :“ RSKpn, k,Ωq
achieves the cut-set bound for the repair of any single node
from any d helper nodes. In other words, C is an pn, kq MSR
code with repair degree d.

Remark 2. The code constructions in this paper rely on
the condition of the form αi R Fqpαj , j ‰ iq, i “ 1, . . . , n
(in this section we also require that the extension degree
rF : Fis ” 1 mod s, i “ 1, . . . , n). The most efficient way to
accomplish this in terms of the value of sub-packetization l
is to take the extension degrees to be the smallest (distinct)
primes, and this is the underlying idea behind the code
constructions presented in this paper.

Proof: Our repair scheme of the i-th node is performed
over the field Fi. More specifically, for every i P rns, we
explicitly construct a vector space Si over the field Fi such
that

dimFi
Si “ pi, Si ` Siαi ` ¨ ¨ ¨ ` Siα

s´1
i “ K, (9)

where Siα :“ tγα : γ P Siu, and the operation ` is the
Minkowski sum of sets, T1`T2 :“ tγ1`γ2 : γ1 P T1, γ2 P
T2u. Note that the sum in (9) is in fact a direct sum since
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the dimension of each summand is pi, and rK : Fis “ spi.
We will describe a construction of Si and prove that Si

satisfies (9) in Lemma 1 later in this section. For now let us
assume that we have such vector spaces Si, i “ 1, 2, . . . , n
and continue the proof of the theorem.

Suppose that we want to repair the i-th node from a subset
R Ď rnsztiu of |R| “ d helper nodes. Let hpxq be the
annihilator polynomial of the set tαj : j P rnszpR Y tiuqu,
i.e.,

hpxq “
ź

jPrnszpRYtiuq
px´ αjq. (10)

By (3) the dual code of C is CK “ GRSKpn, n ´ k,Ω, vq
where the coefficients v “ pv1, . . . , vnq P pK˚qn are
nonzero. Clearly, degpxthpxqq ď s´1`n´pd`1q ă n´k
for all t “ 0, 1, . . . , s´ 1, so for any such t we have

pv1αt
1hpα1q, . . . , vnαt

nhpαnqq P CK. (11)

These s dual codewords will be used to recover the i-th
coordinate. Let c “ pc1, . . . , cnq P C be a codeword, and
let us construct a repair scheme for the coordinate (node) ci
using the values tcj : j P Ru. Rewrite (11) as follows:

nÿ
j“1

vjα
t
jhpαjqcj “ 0 for all t “ 0, . . . , s´ 1. (12)

Let e1, . . . , epi be an arbitrary basis of the subspace Si over
the field Fi. From (12) we obtain the following system of
spi equations:

nÿ
j“1

emvjα
t
jhpαjqcj “ 0, t “ 0, . . . , s´ 1;m “ 1, . . . , pi.

Let tri :“ trK{Fi
be the trace map to the subfield Fi. From

the last set of equations we have, for all t “ 0, . . . , s ´ 1
and all m “ 1, . . . , pi,

nÿ
j“1

tripemvjαt
jhpαjqcjq “ 0. (13)

Arguing as in (6), let us write (13) in the following form:

tripemαt
ivihpαiqciq “ ´

ÿ
j‰i

tripemvjαt
jhpαjqcjq

“ ´
ÿ
jPR

tripemvjαt
jhpαjqcjq

“ ´
ÿ
jPR

αt
jhpαjq tripemvjcjq

(14)

for all t “ 0, . . . , s´1 and m “ 1, . . . , pi, where the second
equality follows from (10) and the third follows from the fact
that the trace mapping tri is Fi-linear, and that αj P Fi for
all j ‰ i.

As before, to recover ci, we download the following pi
symbols of Fi from each helper node cj , j P R:

tripemvjcjq for m “ 1, . . . , pi. (15)

These field elements suffice to recover the node ci. In-
deed, according to (14), we can calculate the values of

tripemαt
ivihpαiqciq for all t “ 0, . . . , s ´ 1 and all m “

1, . . . , pi from the set of elements in (15). By definition,
e1, . . . , epi is a basis of the subspace Si over the field Fi.
According to (9), K “ Si`Siαi`¨ ¨ ¨`Siα

s´1
i . Therefore,

the set temαt
i : t “ 0, . . . , s ´ 1; m “ 1, . . . , piu forms a

basis of K over Fi and so does the set temαt
ivihpαiq : t “

0, . . . , s ´ 1; m “ 1, . . . , piu (recall that vi ¨ hpαiq ‰ 0).
Hence the mapping

KÑ F spi

i

γ ÞÑ ptripemαt
ivihpαiqγq,m “ 1, . . . , pi; t “ 0, . . . , s´ 1q

is a bijection. This means that ci is uniquely determined by
the set of values ttripemαt

ivihpαiqciq,m “ 1, . . . , pi; t “
0, . . . , s´ 1u, validating our repair scheme.

It is also clear that the construction meets the cut-set
bound. Indeed, cj P K for all j and rK : Fis “ spi, so
the amount of information required from each helper node
(15) is exactly p1{sqth fraction of its contents.

This completes the proof of Theorem 4.
In the proof above we assumed the existence of vector

spaces Si, i “ 1, 2, . . . , n that satisfy (9). In the next lemma
we construct such a space and establish its properties.

For a vector space V over a field F and a set of vectors

A “ pa1, . . . , alq Ă V , let SpanF pAq “ třl
i“1 γiai, γi P

F u be the span of A over F .

Lemma 1. Let β be a generating element of K over F “
Fppα1, . . . , αnq. Given i P rns, define the following vector
spaces over Fi:

S
p1q
i “ SpanFi

`
βuαu`qs

i , u “ 0, 1, . . . , s´ 1;

q “ 0, 1, . . . , pi´1
s ´ 1

˘

S
p2q
i “ SpanFi

´ s´1ÿ
t“0

βtαpi´1
i

¯

Si “ S
p1q
i ` Sp2qi .

Then

dimFi Si “ pi, Si ` Siαi ` ¨ ¨ ¨ ` Siα
s´1
i “ K.

Proof: Let K :“ Si`Siαi` ¨ ¨ ¨ `Siα
s´1
i . If K “ K,

then dimFi Si “ pi easily follows. Indeed, by definition
dimFi Si ď pi. On the other hand, rK : Fis “ spi and
K “ K together imply that dimFi Si ě pi.

Let us prove that K “ K. Clearly K is a vector space over
Fi, and K Ď K. Let us show the reverse inclusion, namely
that K Ď K. To prove this, recall that K is a vector space
of dimension s over F, and the set 1, β, . . . , βs´1 forms a
basis, i.e., K “ ‘s´1

u“0β
u
F. Thus, the lemma will be proved

if we show that βu
F Ď K for all u “ 0, 1, . . . , s ´ 1. To

prove this inclusion we will use induction on u.
For the induction base, let u “ 0. In this case, we have

αqs
i P Sp1qi for all 0 ď q ă pi´1

s . Therefore αqs`j
i P Sp1qi αj

i

for all 0 ď q ă pi´1
s . As a result, αqs`j

i P K for all 0 ď
q ă pi´1

s and all 0 ď j ď s´ 1. In other words,

αt
i P K, t “ 0, 1, . . . , pi ´ 2. (16)
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Next we show that also αpi´1
i P K. For every t “

1, . . . , s´ 1 we have 0 ď tpi´1´t
s u ă pi´1

s . As a result,

βtα
t`t

pi´1´t

s us
i P Sp1qi , t “ 1, . . . , s´ 1.

We obtain, for each t “ 1, . . . , s´ 1,

βtαpi´1
i “ βtα

t`t
pi´1´t

s us
i α

pi´1´t´t
pi´1´t

s us
i

P Siα
pi´1´t´t

pi´1´t

s us
i Ď K.

At the same time,

s´1ÿ
t“0

βtαpi´1
i P Sp2qi Ď K.

The last two statements together imply that

αpi´1
i “

s´1ÿ
t“0

βtαpi´1
i ´

s´1ÿ
t“1

βtαpi´1
i P K.

Combining this with (16), we conclude that αt
i P K for all

t “ 0, 1, . . . , pi´1. Recall that 1, αi, . . . , α
pi´1
i is a basis of

F over Fi, and that K is a vector space over Fi, so F Ď K.
This establishes the induction base.

Now let us fix u ě 1 and let us assume that βu1
F Ď K

for all u1 ă u. To prove the induction step, we need to show
that βu

F Ď K. Mimicking the argument that led to (16), we
can easily show that

βuαu`t
i P K, t “ 0, 1, . . . , pi ´ 2. (17)

Let us show that (17) is also true for t “ pi ´ 1, i.e., that
βuαu`pi´1

i P K. For every 1 ď t ď s ´ 1 ´ u, we have
0 ď tpi´1´t

s u ă pi´1
s . As a result,

βu`tα
u`t`t

pi´1´t

s us
i P Sp1qi , t “ 1, . . . , s´ 1´ u.

Therefore, for all such t

βu`tαu`pi´1
i “ βu`tα

u`t`t
pi´1´t

s us
i α

pi´1´t´t
pi´1´t

s us
i

P Siα
pi´1´t´t

pi´1´t

s us
i Ď K. (18)

By the induction hypothesis, βu1
F Ď K for all u1 “

0, 1, . . . , u´ 1. As a result,

βu1
αu`pi´1
i P K, u1 “ 0, 1, . . . , u´ 1. (19)

At the same time,

s´1ÿ
t“0

βtαu`pi´1
i “

´ s´1ÿ
t“0

βtαpi´1
i

¯
αu
i P Sp2qi αu

i Ď K. (20)

Combining (18), (19) and (20), we obtain

βuαu`pi´1
i “

s´1ÿ
t“0

βtαu`pi´1
i ´

u´1ÿ
u1“0

βu1
αu`pi´1
i

´
s´1´uÿ
t“1

βu`tαu`pi´1
i P K.

Now on account of (17) we can conclude that βuαu`t
i P K

for all t “ 0, 1, . . . , pi ´ 1. Therefore, βu
F Ď K. This

establishes the induction step and completes the proof of
the lemma.

The value of sub-packetization of the constructed codes
is given in the following obvious proposition.

Proposition 1. The sub-packetization of our construction is
l “ rK : Fps “ s

śn
i“1 pi, where pi’s are the smallest n

distinct primes satisfying (7).

The proof follows immediately from the fact that the
repair of the i-th coordinate is performed over the field Fi,
so the repair field of our construction is Xn

i“1Fi “ Fp. To
estimate the asymptotics of l for n Ñ 8, recall that our
discussion of Dirichlet’s prime number theorem in Sec. I-C
above implies that, for fixed s, l “ ep1`op1qqn logn. This
proves the upper bound in (2).

IV. A LOWER BOUND ON THE SUB-PACKETIZATION OF

SCALAR LINEAR MSR CODES

In this section we prove a lower bound on the sub-
packetization value l of pn, kq scalar linear MSR codes,
which implies that l ě ep1`op1qqk log k. In contrast, for
MSR array codes, a much smaller sub-packetization value
l “ rrn{pr`1qs is achievable [18]. This shows that limiting
oneself to scalar linear codes necessarily leads to a much
larger sub-packetization, and constructing such codes in real
storage systems is even less feasible than their array code
counterparts. The main result of this section is the following
theorem:

Theorem 5. Let F “ Fq and E “ Fql for a prime power
q. Let d be an integer between k`1 and n´1. Let C Ď En

be an pn, kq scalar linear MDS code with a linear repair
scheme over F. Suppose that the repair bandwidth of the
scheme achieves the cut-set bound with equality for the
repair of any single node from any d helper nodes. Then
the sub-packetization l is at least

l ě
k´1ź
i“1

pi

where pi is the i-th smallest prime.

As discussed above in Sec. I-C, this theorem implies the
asymptotic lower bound l ě ep1`op1qqk log k.

In the proof of Theorem 5, we will need the following
auxiliary lemmas.

Lemma 2. (Subfield criterion [21, Theorem 2.6]) Each
subfield of the field Fpn is of order pm, where m|n. For
every positive divisor m of n there exists a unique subfield
of Fpn that contains pm elements.

Lemma 3. Let E be an extension field of Fq and let
α1, . . . , αn P E. Then

rFqpα1, . . . , αnq : Fqs “ lcmpd1, . . . , dnq,
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where di “ rFqpαiq : Fqs.
Proof: Obvious.

Lemma 4. Let a1, a2, . . . , an and b1, b2, . . . , bn be two sets
of vectors of the same dimension over a field F , and let A
and B denote their spans over F . Let ci “ ai ` bi, i “
1, . . . , n then

dimF pc1, . . . , cnq ď dimA` dimB. (21)

The lemma follows immediately from the fact that, for
any two subspaces A and B of a linear space,

dimpA`Bq ` dimpAXBq “ dimA` dimB.

In the next lemma SF p¨q refers to the row space of the
matrix argument over the field F .

Lemma 5. Let E be an extension of a finite field F of degree
l. Let A “ pai,jq be an mˆ n matrix over E. Then

dimpSF pAqq ď
nÿ

j“1

dimF pa1,j , a2,j , . . . , am,jq. (22)

Moreover, if (22) holds with equality, then for every J Ď
rns,

dimpSF pAJ qq “
ÿ
jPJ

dimF pa1,j , a2,j , . . . , am,jq (23)

where AJ is the restriction of A to the columns with indices
in J .

Proof: Inequality (22) is an immediate consequence of
Lemma 4. Indeed, suppose that n “ 2 and view the ith
row of A as the sum of two 2-dimensional vectors over
E, namely pai,1|0q and p0|ai,2q, i “ 1, . . . ,m; then (22)
is the same as (21). The extension to n ą 2 follows by
straightforward induction.

Now let us prove the second part of the claim. Suppose
that

dimpSF pAqq “
nÿ

j“1

dimF pa1,j , a2,j , . . . , am,jq.

Then for every J Ď rns,ÿ
jPJ

dimF pa1,j , a2,j , . . . , am,jq

`
ÿ

jPJ c

dimF pa1,j , a2,j , . . . , am,jq

“dimpSF pAqq ď dimpSF pAJ qq ` dimpSF pAJ cqq.
But according to (22),

dimpSF pAJ qq ď
ÿ
jPJ

dimF pa1,j , a2,j , . . . , am,jq,

dimpSF pAJ cqq ď
ÿ

jPJ c

dimF pa1,j , a2,j , . . . , am,jq.

Therefore

dimpSF pAJ qq “
ÿ
jPJ

dimF pa1,j , a2,j , . . . , am,jq.

This completes the proof of the lemma.
Now we are ready to prove Theorem 5.

Proof of Theorem 5: Let C be an pn, kq MSR code with
repair degree d. By puncturing the code C to any d ` 1
coordinates, we obtain a pd ` 1, kq MSR code with repair
degree d. Therefore without loss of generality below we
assume that d “ n´ 1.

Let H “ rM |Irs be the parity-check matrix of the code
C over E, written in systematic form, where M is an rˆ k
matrix and Ir is the rˆr identity matrix. Let hij be the entry
of H in position pi, jq. Since C is an MDS code, every square
submatrix of M is invertible. In particular, every entry of M
is nonzero, so without loss of generality we may assume that
h1,j “ 1, j “ 1, 2, . . . , k. Since d ě k ` 1, we also have
n ě k ` 2, and therefore H contains at least two rows.

The theorem will follow from the following claim.

Claim 1. For j “ 1, . . . , k ´ 1 define αj :“ h2,j

h2,k
. Then for

every j “ 1, . . . , k ´ 1,

αj R Fq

`�
αi : i P t1, 2, . . . , k ´ 1uztju(˘. (24)

In other words, αj is not generated by the remaining αi’s
over Fq .

We first show that this claim indeed implies the theorem.
Let di “ rFqpαiq : Fqs be the degree of the field extension
generated by αi. We prove by contradiction that for all j “
1, 2, . . . , k´1, dj does not divide lcmpdi : i P t1, 2, . . . , k´
1uztjuq. Suppose the contrary, i.e., that there is a j such
that dj | lcmpdi : i P t1, 2, . . . , k ´ 1uztjuq. According to
Lemma 3,

rFq

`�
αi : i P t1, 2, . . . , k ´ 1uztju(˘ : Fqs

“ lcmpdi : i P t1, 2, . . . , k ´ 1uztjuq.
Then by Lemma 2, there is a subfield

Fj Ď Fq

`�
αi : i P t1, 2, . . . , k ´ 1uztju(˘ (25)

such that rFj : Fqs “ dj . Notice that E “ Fql contains
all αu, u “ 1, 2, . . . , k ´ 1. So both Fj and Fqpαjq are
subfields of E, and they have the same order qdj . Con-
sequently, Fqpαjq “ Fj . Then from (25) we conclude that
αj P Fq

`�
αi : i P t1, 2, . . . , k´1uztju(˘, which contradicts

(24). Thus, our assumption is wrong, and dj  | lcmpdi : i P
t1, 2, . . . , k ´ 1uztjuq. As an immediate corollary,

l “ rE : Fqs ě rFqptαi : i “ 1, . . . , k ´ 1uq : Fqs

“ lcmpd1, . . . , dk´1q ě
k´1ź
i“1

pi.

Thus we have shown that this claim indeed implies the
theorem. Now let us prove the claim.
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Proof of the Claim: Consider the repair of the j-th node
of the code C for some j P t1, 2, . . . , k´1u. Since C can be
viewed as an pn, k, n´ 1, lq MSR code with a linear repair
scheme over Fq , node cj can be repaired by downloading
pn´1ql{r symbols of Fq from all the remaining nodes tci :
i P rnsztjuu, where r “ n ´ k. Therefore by Theorem 1,
there exist l codewords

pct,1, ct,2, . . . , ct,nq P CK, t “ 1, 2, . . . , l

such that

dimFq pc1,j , c2,j , . . . , cl,jq “ l, and (26)ÿ
i‰j

dimFq pc1,i, c2,i, . . . , cl,iq “ pn´ 1ql
r

. (27)

Since H is a generator matrix of CK, for each t “
1, 2, . . . , l there is a column vector bt P Er such that
pct,1, ct,2, . . . , ct,nq “ bTt H . We define an l ˆ r matrix B
over the field E as B “ rb1b2 . . . blsT . We claim that the Fq-
rank of the row space of B is l. Indeed, assume the contrary,
then there exists a nonzero vector w P Fl

q such that wB “ 0.
Therefore,

wBH “ w

»
————–

c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n
...

...
...

...

cl,1 cl,2 . . . cl,n

fi
ffiffiffiffifl “ 0.

This implies that wpc1,j , c2,j , . . . , cl,jqT “ 0, contradicting
(26). Thus we conclude that B has l linearly independent
rows over Fq .

Now we want to show that there exists an lˆ l invertible
matrix A over Fq such that the matrix AB is an r ˆ r
block-diagonal matrix Diagpa1, . . . , arq, where each block
ai is formed of a column vector of length l

r . In other
words, by performing elementary row operations over Fq ,
B can be transformed into an r ˆ r block-diagonal matrix
Diagpa1, . . . , arq. Indeed, for i P rns, let hi be the i-th
column of the matrix H , and define

ti “ dimFq pBhiq “ dimFq pc1,i, c2,i, . . . , cl,iq.
By (27), we have

nÿ
i‰j

ti “ pn´ 1ql
r

. (28)

Since H generates an pn, rq MDS code, for any subset
of indices J Ď rns of size |J | “ r, the matrix HJ is
of full rank. Therefore, the l ˆ r matrix BHJ satisfies the
conditions

l “ dimpSFq pBqq “ dimpSFq pBHJ qq ď
ÿ
iPJ

dimFq pBhiq,
(29)

where the last inequality follows from Lemma 5. Summing
both sides of (29) over all subsets J Ď rnsztju of size
|J | “ r, we obtain that

l

ˆ
n´ 1

r

˙
ď

ÿ
JĎrnsztju
|J |“r

ÿ
iPJ

dimFq pBhiq

“
ˆ
n´ 2

r ´ 1

˙ÿ
i‰j

ti

(28)“
ˆ
n´ 2

r ´ 1

˙ pn´ 1ql
r

“ l

ˆ
n´ 1

r

˙
.

(30)

This implies that the inequality above is in fact an equality,
and therefore, on account of (29) for every subset J Ď
rnsztju, |J | “ r we have

l “
ÿ
iPJ

dimFq pBhiq “
ÿ
iPJ

ti. (31)

From (31) we obtain that for all i P rnsztju
dimFq

pBhiq “ ti “ l{r. (32)

Moreover, since (29) holds with equality, we can use the
second part of Lemma 5 to claim that, for J Ď rnsztju of
size |J | ď r,

dimpSFq pBHJ qq “
ÿ
iPJ

dimFq pBhiq “ |J |l
r
. (33)

Let us take J to be a subset of tk`1, k`2, . . . , nu. Since the
last r columns of H form an identity matrix, (33) becomes

dimpSFq pBJ qq “ |J |l
r

for all J Ď rrs with size |J | ď r.

(34)

Now we are ready to prove that by performing elementary
row operations over Fq , B can be transformed into an rˆ r
block diagonal matrix Diagpa1, . . . , arq, where each block
ai is a single column vector of length l

r . We proceed by in-
duction. More specifically, we prove that for i “ 1, 2, . . . , r,
we can use elementary row operations over Fq to transform
the first i columns of B into the following form:

»
——————–

a1 0 . . . 0

0 a2 . . . 0

...
...

...
...

0 0 . . . ai

0 0 . . . 0

fi
ffiffiffiffiffiffifl
,

where each 0 in the last row of the above matrix is a column
vector of length lp1´ i

r q.
Let i “ 1. According to (34), each column of B has

dimension l{r over Fq . Thus the induction base holds
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trivially. Now assume that there is an lˆ l invertible matrix
A over Fq such that

ABri´1s “

»
——————–

a1 0 . . . 0

0 a2 . . . 0

...
...

...
...

0 0 . . . ai´1

0 0 . . . 0

fi
ffiffiffiffiffiffifl
,

where each 0 in the last row of this matrix is a column
vector of length lp1 ´ i´1

r q. Let us write the i-th column

of AB as pv1, v2, . . . , vlqT . Since each column of B has
dimension l{r over Fq , pv1, v2, . . . , vlqT also has dimension
l{r over Fq . Since the last lp1 ´ i´1

r q rows of the matrix
ABri´1s are all zero, we can easily deduce that

dimpSFq pABrisqq ď i´ 1

r
l

` dimFq pvpi´1ql{r`1, vpi´1ql{r`2, . . . , vlq.
By (34), dimpSFq pABrisqq “ dimpSFq pBrisqq “ il

r . As a
result,

dimFq
pvpi´1ql{r`1, vpi´1ql{r`2, . . . , vlq ě l{r

“ dimFq pv1, v2, . . . , vlq.
In other words, pvpi´1ql{r`1, vpi´1ql{r`2, . . . , vlq contains a
basis of the set pv1, v2, . . . , vlq over Fq . This implies that
we can use elementary row operations on the matrix AB to
eliminate all the nonzero entries vm for m ď pi´1ql{r, and
thus obtain the desired block-diagonal structure for the first
i columns. This establishes the induction step.

We conclude that there exists an l ˆ l invertible matrix
A over Fq such that AB “ Diagpa1, . . . , arq, where each
block ai is a single column vector of length l

r . For u P rrs,
let Au be the vector space spanned by the entries of au over
Fq . According to (32), for all i P rnsztju

dimFq pABhiq “ dimFq pBhiq “ l{r.
Since for every i “ 1, 2, . . . , n

dimFq pABhiq “ dimFq pDiagpa1, . . . , arqhiq
“ dimFq pA1h1,i ` ¨ ¨ ¨ `Arhr,iq,

for all i P rnsztju we have

dimFq pA1h1,i ` ¨ ¨ ¨ `Arhr,iq “ l{r.
Since each column of B has dimension l{r over Fq , Au

also has dimension l{r over Fq for every u P rrs. Recall
that hu,i ‰ 0 for all u P rrs and all i P rks. Thus

dimFq pAuhu,iq “ l{r “ dimFq pA1h1,i ` ¨ ¨ ¨ `Arhr,iq
for all u “ 1, . . . , r and i P rksztju. Therefore,

A1h1,i “ A2h2,i “ ¨ ¨ ¨ “ Arhr,i and all i P rksztju.
Since h1,i “ 1 for all i “ 1, 2, . . . , k, we have

A2h2,i “ A1 for all i P rksztju. (35)

Equivalently,

A2αi “ A2 for all i P t1, 2, . . . , k ´ 1uztju.
By definition A2 is a vector space over Fq, so

A2γ “ A2 for all γ P Fqptαi : i P t1, 2, . . . , k ´ 1uztjuuq.
(36)

On the other hand,

dimFq pA1h1,j ` ¨ ¨ ¨ `Arhr,jq
“ dimFq pDiagpa1, . . . , arqhjq “ dimFq pABhjq
“ dimFq pBhjq “ dimFqtc1,j , c2,j , . . . , cl,ju “ l,

(37)
while

dimFq pAuhu,jq “ l{r, u “ 1, 2, . . . , r. (38)

Equations (37) and (38) together imply that the vector
spaces A1h1,j , A2h2,j , . . . , Arhr,j are pairwise disjoint. In
particular, A1 X A2h2,j “ t0u. On account of (35), we
therefore have A2h2,k X A2h2,j “ t0u. This implies that
A2αj ‰ A2. By (36), we conclude that αj R Fqptαi :
i P t1, 2, . . . , k ´ 1uztjuuq. This completes the proof of
the claim.
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