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Abstract—We study problems in distribution property test-
ing: Given sample access to one or more unknown discrete
distributions, we want to determine whether they have some
global property or are epsilon-far from having the property in
L1 distance (equivalently, total variation distance, or “statistical
distance”). In this work, we give a novel general approach
for distribution testing. We describe two techniques: our first
technique gives sample–optimal testers, while our second tech-
nique gives matching sample lower bounds. As a consequence,
we resolve the sample complexity of a wide variety of testing
problems.

Our upper bounds are obtained via a modular reduction-
based approach. Our approach yields optimal testers for
numerous problems by using a standard L2-identity tester as
a black-box. Using this recipe, we obtain simple estimators
for a wide range of problems, encompassing many problems
previously studied in the TCS literature, namely: (1) identity
testing to a fixed distribution, (2) closeness testing between
two unknown distributions (with equal/unequal sample sizes),
(3) independence testing (in any number of dimensions), (4)
closeness testing for collections of distributions, and (5) testing
histograms. For all of these problems, our testers are sample-
optimal, up to constant factors. With the exception of (1),
ours are the first sample-optimal testers for the corresponding
problems. Moreover, our estimators are significantly simpler to
state and analyze compared to previous results.

As an important application of our reduction-based tech-
nique, we obtain the first adaptive algorithm for testing
equivalence between two unknown distributions. The sample
complexity of our algorithm depends on the structure of the
unknown distributions – as opposed to merely their domain size
– and is significantly better compared to the worst-case optimal
L1-tester in many natural instances. Moreover, our technique
naturally generalizes to other metrics beyond the L1-distance.
As an illustration of its flexibility, we use it to obtain the first
near-optimal equivalence tester under the Hellinger distance.

Our lower bounds are obtained via a direct information-
theoretic approach: Given a candidate hard instance, our
proof proceeds by bounding the mutual information between
appropriate random variables. While this is a classical method
in information theory, prior to our work, it had not been
used in this context. Previous lower bounds relied either on
the birthday paradox, or on moment-matching and were thus
restricted to symmetric properties. Our lower bound approach
does not suffer from any such restrictions and gives tight
sample lower bounds for the aforementioned problems.

Keywords-distribution testing, property testing, hypothesis
testing

I. INTRODUCTION

A. Background

The problem of determining whether an unknown object

fits a model based on observed data is of fundamental sci-

entific importance. We study the following formalization of

this problem: Given samples from a collection of probability

distributions, can we determine whether the distributions in

question satisfy a certain property? This is the prototypical

question in statistical hypothesis testing [1], [2]. During the

past two decades, this question has received considerable

attention by the TCS community in the framework of

property testing [3], [4], with a focus on discrete probability

distributions.

The area of distribution property testing [5], [6] has

developed into a mature research field with connections

to information theory, learning and statistics. The generic

inference problem in this field is the following: given sample

access to one or more unknown distributions, determine

whether they have some global property or are “far” (in

statistical distance or, equivalently, �1 norm) from having

the property. The goal is to obtain statistically and com-

putationally efficient testing algorithms, i.e., algorithms that

use the information-theoretically minimum sample size and

run in polynomial time. See [7], [5], [8], [9], [10], [11], [12],

[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]

for a sample of works and [24], [25] for two recent surveys.

In this work, we give a new general approach for dis-

tribution testing. We describe two novel techniques: our

first technique yields sample–optimal testers, while our

second technique gives matching sample lower bounds. As

a consequence, we resolve the sample complexity of a wide

variety of testing problems.

All our upper bounds are obtained via a collection of

modular reductions. Our reduction-based method provides

a simple recipe to obtain optimal testers under the �1-norm

(and other metrics), by applying a randomized transforma-

tion to a basic �2-identity tester. While the �2-norm has

been used before as a tool in distribution testing [5], our

reduction-based approach is conceptually and technically

different than previous approaches. We elaborate on this

point in Section I-C. We use our reduction-based approach
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to resolve a number of open problems in the literature

(see Section I-B). In addition to pinning–down the sample

complexity of a wide range of problems, a key contribution

of our algorithmic approach is methodological. In particular,
the main conceptual message is that one does not need
an inherently different statistic for each testing problem. In

contrast, all our testing algorithms follow the same pattern:

They are obtained by applying a simple transformation to

a basic statistic – one that tests the identity between two

distributions in �2-norm – in a black-box manner. Following

this scheme, we obtain the first sample-optimal testers for

many properties. Importantly, our testers are simple and, in

most cases, their analysis fits in a paragraph.

As our second main contribution, we provide a direct,

elementary approach to prove sample complexity lower

bounds for distribution testing problems. Given a candi-

date hard instance, our proof proceeds by bounding the

mutual information between appropriate random variables.

Our analysis leads to new, optimal lower bounds for sev-

eral problems, including testing closeness (under various

metrics), testing independence (in any dimension), and test-

ing histograms. Notably, proving sample complexity lower

bounds by bounding the mutual information is a classical

approach in information theory. Perhaps surprisingly, prior

to our work, this method had not been used in distribu-

tion testing. Previous techniques were either based on the

birthday paradox or on moment-matching [26], [13], and

were thus restricted to testing symmetric properties. Our

technique circumvents the moment-matching approach, and

is not restricted to symmetric properties.

B. Our Contributions

The main contribution of this paper is a reduction–based

framework to obtain testing algorithms, and a direct ap-

proach to prove lower bounds. We do not aim to exhaustively

cover all possible applications of our techniques, but rather

to give some selected results that are indicative of the

generality and power of our methods. More specifically, we

obtain the following results:

1) We give an alternative optimal �1-identity tester against

a fixed distribution, with sample complexity O(
√
n/ε2),

matching the recently obtained tight bound [19], [20]. The

main advantage of our tester is its simplicity: Our reduction

and its analysis are remarkably short and simple in this

case. Our tester straightforwardly implies the “χ2 versus �1”

guarantee recently used as the main statistical test in [22].

2) We design an optimal tester for �1-closeness between

two unknown distributions in the standard and the (more

general) unequal-sized sample regimes. For the standard

regime (i.e., when we draw the same number of sam-

ples from each distribution), we recover the tight sample

complexity of O(max(n2/3/ε4/3, n1/2/ε2)), matching [18].

Importantly, our tester straightforwardly extends to unequal-

sized samples, giving the first optimal tester in this set-

ting. Closeness testing with unequal sized samples was

considered in [27] that gives sample upper and lower

bounds with a polynomial gap between them. Our tester

uses m1= Ω(max(n2/3/ε4/3, n1/2/ε2)) samples from one

distribution and m2 = O(max(nm
−1/2
1 /ε2,

√
n/ε2)) from

the other. This tradeoff is sample-optimal (up to a constant

factor) for all settings, and improves on the recent work [28]

that obtains the same tradeoff under the additional assump-

tion that ε > n−1/12. In sharp contrast to [28], our algorithm

is extremely simple and its analysis fits in a few lines.

3) We study the problem of �1-testing closeness between

two unknown distributions in an adaptive setting, where

the goal is to design estimators whose sample complexity

depends on the (unknown) structure of the sampled dis-
tributions – as opposed to merely their domain size. We

obtain the first algorithm for this problem: Our tester uses

O(polylog(n/ε)· minm>0(m+ ‖q<1/m‖0 · ‖q<1/m‖2/ε2 +
‖q‖2/3/ε2)) samples from each of the distributions p, q on

[n]. Here, q<1/m denotes the pseudo-distribution obtained

from q by removing the domain elements with mass ≥ 1/m,
and ‖q<1/m‖0 is the number of elements with mass < 1/m.

There are a few remarks to be made about the sample

complexity of this algorithm. To begin with, note that since

‖q<1/m‖2 ≤ 1/
√
m, taking m = m0 := min(n, n2/3/ε4/3)

attains the sample complexity of the standard �1-closeness

testing algorithm to within logarithmic factors. However,

unlike the standard �1-closeness testing algorithm, our al-

gorithm will only have this kind of complexity, if q has

approximately m0 bins of mass approximately 1/m0 and

approximately n smaller bins, a situation which seems

unlikely to occur in natural settings when m0 � n. In

fact, the ‖q‖2/3/ε2 term in the sample complexity makes

our tester comparable to the instance-optimal tester from

[19]. In particular, [19] give an identity tester against an

explicit distribution q that has essentially the best possible

sample complexity of any tester for that q. This sample

complexity (for a broad range of q and ε) is proportional

to ‖q‖2/3/ε2. Our tester achieves this term in its sample

complexity without knowing q ahead of time.

4) We show that our framework easily generalizes to give

near-optimal algorithms and lower bounds for other met-

rics as well, beyond the �1-norm. As an illustration of

this fact, we describe an algorithm and a nearly-matching

lower bound for testing closeness under Hellinger distance,

H2(p, q) = (1/2)‖√p − √q‖22, one of the most powerful

f -divergences. This question has been studied before: [29]

gave a tester for this problem with sample complexity

Õ(n2/3/ε4). The sample complexity of our algorithm is

Õ(min(n2/3/ε4/3, n3/4/ε)), and we prove a lower bound

of Ω(min(n2/3/ε4/3, n3/4/ε)). Note that the second term

of n3/4/ε in the sample complexity differs from the corre-

sponding �1 term of n1/2/ε2.

5) We obtain the first sample-optimal algorithm and

685686686



matching lower bound for testing independence over

×d
i=1[ni]. Prior to our work, the sample complexity of

this problem remained open, even for the two-dimensional

case. We prove that the optimal sample complexity

of independence testing (upper and lower bound) is

Θ(maxj((
∏d

i=1 ni)
1/2/ε2, n

1/3
j (

∏d
i=1 ni)

1/3/ε4/3)). Previ-

ous testers for independence were suboptimal up to polyno-

mial factors in n and 1/ε, even for d = 2. Specifically, Batu

et al. [8] gave an independence tester over [n] × [m] with

sample complexity Õ(n2/3m1/3) · poly(1/ε), for n ≥ m.
On the lower bound side, Levi, Ron, and Rubinfeld [16]

showed a sample complexity lower bound of Ω(
√
nm) (for

all n ≥ m), and Ω(n2/3m1/3) (for n = Ω(m logm)).
More recently, Acharya et al. [22] gave an upper bound

of O(((
∏d

i=1 ni)
1/2 +

∑d
i=1 ni)/ε

2), which is optimal up

to constant factors for the very special case that all the ni’s

are the same. In summary, we resolve the sample complexity

of this problem in any dimension d, up to a constant factor,

as a function of all relevant parameters.

6) We obtain the first sample-optimal algorithms for test-

ing equivalence for collections of distributions [16] in

the sampling and the oracle model, improving on [16]

by polynomial factors. In the sampling model, we ob-

serve that the problem is equivalent to (a variant of) two-

dimensional independence testing. In fact, in the unknown-

weights case, the problem is identical. In the known-

weights case, the problem is equivalent to two-dimensional

independence testing, where the algorithm is given ex-

plicit access to one of the marginals (say, the marginal

on [m]). For this setting, we give a sample-optimal tester

with sample size O(max(
√
nm/ε2, n2/3m1/3/ε4/3))1. In

the query model, we give a sample-optimal closeness

tester for m distributions over [n] with sample complexity

O(max(
√
n/ε2, n2/3/ε4/3)). This bound is independent of

m and matches the worst-case optimal bound for testing

closeness between two unknown distributions.

7) As a final application of our techniques, we study the

problem of testing whether a distribution belongs in a given

“structured family” [22], [23], [30]. We focus on the property

of being a k-histogram over [n], i.e., that the probability

mass function is piecewise constant with at most k known
interval pieces. This is a natural problem of particular

interest in model selection. For k = 1, the problem is

tantamount to uniformity testing, while for k = Ω(n) it

can be seen to be equivalent to testing closeness between

two unknown distributions over a domain of size Ω(n). We

design a tester for the property of being a k-histogram (with

respect to a given set of intervals) with sample complexity

O(max(
√
n/ε2, n1/3k1/3/ε4/3)) samples. We also prove

1It should be noted that, while this is the same form as the sample
complexity for independence testing in two dimensions, there is a crucial
difference. In this setting, the parameter m represents the support size of
the marginal that is explicitly given to us, rather than the marginal with
smaller support size.

that this bound is information-theoretically optimal, up to

constant factors. In concurrent work, Canonne [30] obtained

a nearly-optimal tester for the harder setting where the k
intervals are unknown.

C. Prior Techniques and Overview of our Approach

In this section, we provide a detailed intuitive explanation

of our two techniques, in tandem with a comparison to pre-

vious approaches. We start with our upper bound approach.

It is reasonable to expect that the �2-norm is useful as a

tool in distribution property testing. Indeed, for elements

with “small” probability mass, estimating second moments

is a natural choice in the sublinear regime. Alas, a direct �2-

tester will often not work for the following reason: The error

coming from the “heavy” elements will force the estimator

to draw too many samples.

In their seminal paper, Batu et al. [5], [6] gave an �2-

closeness tester and used it to obtain an �1-closeness tester.

To circumvent the aforementioned issue, their �1-tester has

two stages: It first explicitly learns the pseudo-distribution

supported on the heavy elements, and then it applies the �2-

tester on the pseudo-distribution over the light elements. This

approach of combining learning (for the heavy elements) and

�2-closeness testing (for the light elements) is later refined

by Chan et al. [18], where it is shown that it inherently leads

to a suboptimal sample complexity for the testing closeness

problem. Motivated by this shortcoming, it was suggested

in [18] that the use of the �2-norm may be insufficient,

and that a more direct approach may be needed to achieve

sample-optimal �1-testers. This suggestion led researchers

to consider different approaches to �1-testing, in particular

appropriately rescaled versions of the chi-squared test [31],

[18], [19], [28], [22]. This line of work has led to sample-

optimal testers for closeness testing [18] and identity testing

[19], [22]. A major difference between the explicit rescaling

performed by chi-squared testers and our reduction-based

framework is that the former approach seems to require

a new algorithm with a highly-nontrivial analysis for each

particular testing problem.

Our upper bound approach postulates that the inefficiency

of [5], [6] is due to the explicit learning of the heavy

elements and not to the use of the �2-norm. Our approach

provides a simple and general way to essentially remove

this learning step. We achieve this via a collection of simple

reductions: Starting from a given instance of an �1-testing

problem A, we construct a new instance of an appropri-

ate �2-testing problem B, so that the answers to the two

problems for these instances are identical. Here, problem A
can be any of the testing problems discussed in Section I-B,

while problem B is always the same. Namely, we define B to

be the problem of �2-testing closeness between two unknown

distributions, under the promise that at least one of the distri-

butions in question has small �2-norm. Our reductions have

the property that a sample-optimal algorithm for problem
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B implies a (nearly) sample-optimal algorithm for A. An

important conceptual consequence of our direct reduction-

based approach is that problem B is of central importance

in distribution testing, since a wide range of problems can

be reduced to it with optimal sample guarantees. We remark

that sample-optimal algorithms for problem B are known in

the literature: a natural estimator from [18], as well as a

similar estimator from [5] achieve optimal bounds.

The precise form of our reductions naturally depends on

the problem A that we start from. While the details differ

based on the problem, all our reductions rely on a common

recipe: We randomly transform the initial distributions in

question (i.e., the distributions we are given sample access

to) to new distributions (over a potentially larger domain)

such that at least one of the new distributions has appropri-

ately small �2-norm. Our transformation preserves the �1-

norm, and is such that we can easily simulate samples from

the new distributions. More specifically, our transformation

is obtained by drawing random samples from one of the

distributions in question to discover its heavy bins. We then

artificially subdivide each heavy bin into multiple bins, so

that the resulting distribution becomes approximately flat.

This procedure decreases the �2-norm while increasing the

domain size. By balancing these two quantities, we obtain

sample-optimal testers for a wide variety of properties.

We note that our technique is at a high level similar to the

approaches employed in [20], [21]. Both techniques relate

an “�1-type” testing problem to an �2-testing problem (or a

collection of �2-testing problems) on a suitably transformed

domain. However, this is where the similarities end. In [20]

and [21], the primary obstacle is the potentially huge domain

size, and the approach was to take advantage of structure in

the underlying distributions in order to reduce the �1-testing

problem to an �2-testing problem on a notably smaller
domain. In this work, our transformations are primarily

designed to deal with the problem that standard �2-testers

perform poorly if the distributions involved have large �2
norm. Thus, our transformations produce distributions on a

larger domain in order to appropriately flatten them.

In summary, our upper bound approach provides reduc-

tions of numerous distribution testing problems to a specific

�2-testing problem B that yield sample-optimal algorithms.

It is tempting to conjecture that optimal reductions in the

opposite direction exist, which would allow translating lower

bounds for problem B to tight lower bounds for other prob-

lems. We do not expect optimal reductions in the opposite

direction, roughly because the hard instances for many of our

problems are substantially different from the hard instances

for problem B. This naturally brings us to our lower bound

approach, explained below.

Our lower bounds proceed by constructing explicit dis-

tributions D and D′ over (sets of) distributions, so that a

random distribution p drawn from D satisfies the property,

a random distribution p from D′ is far from satisfying the

property (with high probability), and it is hard to distinguish

between the two cases given a small number of samples. Our

analysis is based on classical information-theoretic notions

and is significantly different from previous approaches in

this context. Instead of using techniques involving matching

moments [26], [13], we are able to directly prove that the

mutual information between the set of samples drawn and

the distribution that p was drawn from is small. Appropri-

ately bounding the mutual information is perhaps a techni-

cal exercise, but remains quite manageable only requiring

elementary approximation arguments. We believe that this

technique is more flexible than the techniques of [26], [13]

(e.g., it is not restricted to symmetric properties), and may

prove useful in future testing problems.

Remark I.1. Our approach provides a unifying framework

to obtain tight bounds for distribution testing problems.

Since the dissemination of an earlier version of our paper,

Oded Goldreich gave an excellent exposition of our approach

in his upcoming book [32].

D. Organization

In Section II, we describe our reduction-based approach

and exploit it to obtain optimal testers for a variety of

problems. In Section III, we describe our lower bound

approach and apply it to prove tight lower bounds for various

problems. Due to space constraints, many proofs are deferred

to the full version.

II. OUR REDUCTION AND ITS ALGORITHMIC

APPLICATIONS

In Section II-A, we describe our basic reduction from �1
to �2 testing. In Section II-B, we apply our reduction to a

variety of concrete distribution testing problems.

A. Reduction of �1-testing to �2-testing

The starting point of our reduction-based approach is

a “basic tester” for the identity between two unknown

distributions with respect to the �2-norm. We emphasize that

a simple and natural tester turns out to be optimal in this

setting. More specifically, we will use the following simple

lemma (that follows, e.g., from Proposition 3.1 in [18]):

Lemma II.1. Let p and q be two unknown distributions on
[n]. There exists an algorithm that on input n, ε > 0, and
b ≥ max{‖p‖2, ‖q‖2} draws O(bn/ε2) samples from each
of p and q, and with probability at least 2/3 distinguishes
between the cases that p = q and ‖p− q‖1 > ε.

Remark II.2. We remark that Proposition 3.1 of [18]

provides a somewhat stronger guarantee than the one of

Lemma II.1. Specifically, it yields a tolerant �2-closeness

tester with the following performance guarantee: Given

O(bn/ε2) samples from distributions p, q over [n], where

b ≥ max{‖p‖2, ‖q‖2}, the algorithm distinguishes (with

probability at least 2/3) between the cases that ‖p− q‖2 ≤
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ε/(2
√
n) and ‖p − q‖2 ≥ ε/

√
n. The soundness guarantee

of Lemma II.1 follows from the Cauchy-Schwarz inequality.

Observe that if ‖p‖2 and ‖q‖2 are both small, the algo-

rithm of Lemma II.1 is in fact sample-efficient. For example,

if both are O(1/
√
n), its sample complexity is an optimal

O(
√
n/ε2). On the other hand, the performance of this

algorithm degrades as ‖p‖2 or ‖q‖2 increases. Fortunately,

there are some simple reductions to circumvent this issue.

To begin with, we note that it suffices that only one of ‖p‖2
and ‖q‖2 is small. This is essentially because if there is a

large difference between the two, this is easy to detect.

Lemma II.3. Let p and q be two unknown distributions on
[n]. There exists an algorithm that on input n, ε > 0, and
b ≥ min{‖p‖2, ‖q‖2} draws O(bn/ε2) samples from each
of p and q and, with probability at least 2/3, distinguishes
between the cases that p = q and ‖p− q‖1 > ε.

Proof: The basic idea is to first test if ‖p‖2 = Θ(‖q‖2),
and if so to run the tester of Lemma II.1. To test whether

‖p‖2 = Θ(‖q‖2), we estimate ‖p‖2 and ‖q‖2 up to a

multiplicative constant factor. It is known [7], [8] that this

can be done with O(
√
n) = O(min(‖p‖2, ‖q‖2)n) samples.

If ‖p‖2 and ‖q‖2 do not agree to within a constant factor, we

can conclude that p �= q. Otherwise, we use the tester from

Lemma II.1, and note that the number of required samples

is O(‖p‖2n/ε2).
In our applications of Lemma II.3, we take the parameter

b to be equal to our upper bound on min{‖p‖2, ‖q‖2}. In all

our algorithms in Section II-B this upper bound will be clear

from the context. If both our initial distributions have large

�2-norm, we describe a new way to reduce the �2-norm of at

least one of them by splitting the large weight bins (domain

elements) into pieces. The following key definition is the

basis for our reduction:

Definition II.4. Given a distribution p on [n] and a multiset

S of elements of [n], define the split distribution pS on [n+
|S|] as follows: For 1 ≤ i ≤ n, let ai equal 1 plus the number

of elements of S that are equal to i. Thus,
∑n

i=1 ai = n+
|S|. We can therefore associate the elements of [n + |S|]
to elements of the set B = {(i, j) : i ∈ [n], 1 ≤ j ≤ ai}.
We now define a distribution pS with support B, by letting a

random sample from pS be given by (i, j), where i is drawn

randomly from p and j is drawn randomly from [ai].

We now point out two basic facts about split distributions:

Fact II.5. Let p and q be probability distributions on [n],
and S a given multiset of [n]. Then: (i) We can simulate a
sample from pS or qS by taking a single sample from p or
q, respectively. (ii) It holds ‖pS − qS‖1 = ‖p− q‖1.

Fact II.5 implies that it suffices to be able to test the

closeness of pS and qS , for some S. In particular, we want to

find an S so that ‖pS‖2 and ‖qS‖2 are small. The following

lemma shows how to achieve this:

Lemma II.6. Let p be a distribution on [n]. Then: (i) For
any multisets S ⊆ S′ of [n], ‖pS′‖2 ≤ ‖pS‖2, and (ii)
If S is obtained by taking Poi(m) samples from p, then
E[‖pS‖22] ≤ 1/m.

Proof: Let ai equal one plus the number of copies of i
in S, and a′i equal one plus the number of copies of i in S′.
We note that pS = (i, j) with probability pi/ai. Therefore,

for (i) we have that

‖pS‖22 =
n∑

i=1

ai∑
j=1

(pi/ai)
2 =

n∑
i=1

p2i /ai ≥
n∑

i=1

p2i /a
′
i = ‖pS′‖22.

For claim (ii), we note that the expected squared �2-norm

of pS is
∑n

i=1 p
2
iE[a

−1
i ]. We note that ai is distributed as

1+X where X is a Poi(mpi) random variable. Recall that if

Y is a random variable distributed as Poi(λ), then E[zY ] =
eλ(z−1). Taking an integral we find that

E [1/(1 +X)] = E

[
1∫
0

zXdz

]
=

1∫
0

E[zX ]dz =
1∫
0

eλ(z−1)dz

= (1− e−λ)/λ ≤ 1/λ.

Therefore, we have that E[‖pS‖22] ≤
∑n

i=1 p
2
i /(mpi) =

(1/m)
∑n

i=1 pi = 1/m. This completes the proof.

B. Algorithmic Applications

1) Testing Identity to a Known Distribution: We start by

applying our framework to give a simple alternate optimal

identity tester to a fixed distribution in the minimax sense.

In this case, our algorithm is extremely easy, and provides a

much simpler proof of the known optimal bound [19], [20]:

Proposition II.7. There exists an algorithm that given an
explicit distribution q supported on [n] and O(

√
n/ε2) inde-

pendent samples from a distribution p over [n] distinguishes
with probability at least 2/3 between the cases where p = q
and ‖p− q‖1 ≥ ε.

Proof: Let S be the multiset where S contains 
nqi�
copies of i. Note that |S| ≤ ∑n

i=1 nqi = n. Note also

that qS assigns probability mass at most 1/n to each bin.

Therefore, we have that ‖qS‖2 = O(1/
√
n). It now suffices

to distinguish between the cases that pS = qS and the case

that ‖pS−qS‖1 ≥ ε. Using the basic tester from Lemma II.3

for b = O(1/
√
n), we can do this using O(2nb/ε2) =

O(
√
n/ε2) samples from pS . This can be simulated using

O(
√
n/ε2) samples from p, which completes the proof.

Remark II.8. It is easy to see that the identity tester of

Proposition II.7 satisfies a stronger guarantee: More specif-

ically, it distinguishes between the cases that χ2(p, q) :=∑n
i=1(pi − qi)

2/qi ≤ ε2/10 versus ‖p − q‖1 ≥ ε. Hence,

it implies Theorem 1 of [22]. See the full version for an

explanation.
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Remark II.9. After the dissemination of an earlier version

of this paper, inspired by our work, Goldreich [33] reduced

testing identity to a fixed distribution to its special case of

uniformity testing, via a refinement of the above idea. This

elegant idea does not seem to generalize to other problems

considered here.

2) Testing Closeness: We now turn to the problem of

testing closeness between two unknown distributions p, q.

The difficulty of this case lies in the fact that, not knowing q,
we cannot subdivide into bins in such a way as to guarantee

that ‖qS‖2 = O(1/
√
n). However, we can do nearly as

well by first drawing an appropriate number of samples

from q, and then using them to provide our subdivisions.

In particular, we want to divide heavier bins more times, so

we will split a bin a number of times given by the number

of samples drawn from it in an initial step.

Proposition II.10. There exists an algorithm that given
sample access to two distributions p and q over [n] distin-
guishes with probability 2/3 between the cases p = q and
‖p − q‖1 > ε using O(max(n2/3/ε4/3,

√
n/ε2)) samples

from each of p and q.

Proof: The algorithm is as follows:

Algorithm Test-Closeness

Input: Sample access to distributions p and q supported

on [n] and ε > 0.
Output: “YES” with probability at least 2/3 if p = q,

“NO” with probability at least 2/3 if ‖p− q‖1 ≥ ε.

1) Let k = min(n, n2/3ε−4/3).
2) Define a multiset S by taking Poi(k) samples from

q.

3) Run the tester from Lemma II.3 to distinguish

between pS = qS and ‖pS − qS‖1 ≥ ε.

To show correctness, we first note that with high proba-

bility we have |S| = O(n). Furthermore, by Lemma II.6 it

follows that the expected squared �2 norm of qS is at most

1/k. Therefore, with probability at least 9/10, we have that

|S| = O(n) and ‖qS‖2 = O(1/
√
k).

The tester from Lemma II.3 distinguishes between pS =
qS and ‖pS − qS‖1 ≥ ε with O(nk−1/2/ε2) samples.

By Fact II.5, this is equivalent to distinguishing between

p = q and ‖p − q‖1 ≥ ε. Thus, the total number of

samples taken by the algorithm is O(k + nk−1/2/ε2) =
O(max(n2/3ε−4/3,

√
n/ε2)).

We consider a generalization of testing closeness where

we have access to different size samples from the two

distributions, and use our technique to provide the first

sample-optimal algorithm for the entire range of parameters:

Proposition II.11. There exists an algorithm that given
sample access to two distributions, p and q over [n] distin-
guishes with probability 2/3 between the cases p = q and

‖p − q‖1 > ε given m1 samples from q and an additional
m2 = O(max(nm

−1/2
1 /ε2,

√
n/ε2)) samples from each of

p and q.

The basic idea of this algorithm is the same as above,

except that if m1 � m2, we can use m1 samples from q to

flatten it more efficiently. See the full version for the details.

3) Adaptive Testing: In this subsection, we provide near-

optimal testers for identity and closeness in the adaptive

setting. We start with the simpler case of testing identity to

a fixed distribution. This serves as a warm-up for the more

challenging case of two unknown distributions.

Note that the identity tester of Proposition II.7 is sample-

optimal only for a worst-case choice of the explicit distri-

bution q. (It turns out that the worst case corresponds to

q being the uniform distribution over [n].) Intuitively, for

most choices of q, one can actually do substantially better.

This fact was first formalized and shown in [19], where it is

shown that Θ(‖q‖2/3/ε2) samples are optimal in most cases.

In the following proposition, we give a very simple

tester with a compact analysis whose sample complexity is

essentially optimal as a function of q. The basic idea of our

tester is the following: First, we partition the domain into

categories based on the approximate mass of the elements

of q, and then we run an �2-tester independently on each

category. See the full version for the details.

Proposition II.12. There exists an algorithm that on input
an explicit distribution q over [n], a parameter ε > 0, and
O(polylog(n/ε)‖q‖2/3/ε2) samples from a distribution p
over [n] distinguishes with probability at least 2/3 between
the cases where p = q and ‖p− q‖1 ≥ ε.

We now show how to use our reduction-based approach

to obtain the first nearly adaptive algorithm for testing

closeness between two unknown distributions. Note that the

algorithm of Proposition II.12 crucially exploits the a priori

knowledge of the explicit distribution. In the setting where

both distributions are unknown, this is no longer possible.

At a high-level, our adaptive closeness testing algorithm is

similar to that of Proposition II.12: We start by partitioning

[n] into categories based on the approximate mass of one

of the two unknown distributions, say q, and then we run

an �2-tester independently on each category. A fundamental

difficulty in our setting is that q is unknown. Hence, to

achieve this, we will need to take samples from q and create

categories based on the number of samples coming from

each bin. To state our result, we need the following notation:

Definition II.13. Let q be a discrete distribution and x > 0.

We denote by q<x the pseudo-distribution obtained from

q by setting the probabilities of all domain elements with

probability at least x to 0.

The main result of this subsection is the following:

Proposition II.14. Given sample access to two unknown
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distributions, p, q over [n] and ε > 0, there exists a
computationally efficient algorithm that draws an expected

O(polylog(n/ε) min
m>0

(m+‖q<1/m‖0‖q<1/m‖2/ε2+‖q‖2/3/ε2))

samples from each of p and q, and distinguishes with
probability 2/3 between p = q and ‖p− q‖1 ≥ ε.

The proof of Proposition II.14 is deferred to the full

version. Note that since ‖q<1/m‖2 ≤ 1/
√
m, taking m =

min(n, n2/3/ε4/3) attains the complexity of the standard �1-

closeness testing algorithm to within logarithmic factors.

We now illustrate with a number of examples that the

algorithm of Proposition II.14 performs substantially better

than the worst-case optimal �1-closeness tester in a number

of interesting cases. First, consider the case that the distribu-

tion q is essentially supported on relatively heavy bins. It is

easy to see that the sample complexity of our algorithm will

then be roughly proportional to ‖q‖2/3/ε2. We remark that

this bound is essentially optimal, even for the easier setting

that q had been given to us explicitly. As a second example,

consider the case that q is roughly uniform. In this case, we

have that ‖q‖2 will be small, and our algorithm will have

sample complexity Õ(
√
n/ε2).

Finally, consider the case that the bins of the distribution

q can be partitioned into two classes: they have mass

either approximately 1/n or approximately x > 1/n. For

this case, our above algorithm will need Õ(min(x−1 +√
n/ε2, nx−1/2/ε2)) samples. We remark that this sample

bound can be shown to be optimal for such distributions

(up to the logarithmic factor in the Õ). Also note that

the aforementioned sample upper bound is strictly better

than the worst-case bound of n2/3/ε4/3, unless x equals

n−2/3ε4/3.

Using ideas similar to those in our adaptive closeness

tester, our reduction-based approach yields a nearly sample-

optimal algorithm for testing closeness of two unknown

distributions with respect to the Hellinger distance. See the

full version for the details.

4) Independence Testing: In this subsection we study the

problem of testing independence of a d-dimensional discrete

distribution p. We start by giving an optimal independence

tester for the two-dimensional case, and then handle the case

of arbitrary dimension.

The basic idea of our algorithm is as follows: Let q be

the product of the marginal distributions of p. We want to

test whether or not p = q or ‖p − q‖1 > ε. We do this

in our standard way, by first flattening q and then using

an appropriate �2 tester. However, because q is a product
distribution, we can flatten it more efficiently by flattening

its marginal distributions.

Our algorithm for testing independence in two dimensions

is as follows:

Algorithm Test-Independence-2D

Input: Sample access to a distribution p on [n] × [m]
with n ≥ m and ε > 0.
Output:“YES” with probability at least 2/3 if the coor-

dinates of p are independent, “NO” with probability at

least 2/3 if p is ε-far from any product distribution on

[n]× [m].

1) Let k = min(n, n2/3m1/3ε−4/3).
2) Let S1 be a multiset in [n] obtained by taking Poi(k)

samples from p1 = π1(p). Let S2 be a multiset in

[m] obtained by taking Poi(m) samples from p2 =
π2(p). Let S be the multiset of elements of [n]×[m]
so that

1 + {Number of copies of (a, b) in S} =
(1 + {Number of copies of a in S1})(1+
{Number of copies of b in S2}).

3) Let q be the distribution on [n] × [m] obtained by

taking (x1, y1), (x2, y2) independent samples from p
and returning (x1, y2). Run the tester from Lemma

II.3 to distinguish between the cases pS = qS and

‖pS − qS‖1 ≥ ε.

For correctness, we note that by Lemma II.6, with prob-

ability at least 9/10 over our samples from S1 and S2, all

of the above hold: (i) |S1| = O(n) and |S2| = O(m),
and (ii) ‖(p1)S1

‖22 = O(1/k), ‖(p2)S2
‖22 = O(1/m).

We henceforth condition on this event. We note that the

distribution q is exactly p1×p2. Therefore, if the coordinates

of p are independent, then p = q. On the other hand,

since q has independent coordinates, if p is ε-far from any

product distribution, ‖p − q‖1 ≥ ε. Therefore, it suffices to

distinguish between p = q and ‖p − q‖1 ≥ ε. By Fact II.5,

this is equivalent to distinguishing between pS = qS and

‖pS − qS‖1 ≥ ε. This completes correctness.

We now analyze the sample complexity. We first draw

samples when picking S1 and S2. With high probability,

the corresponding number of samples is O(m + k) =
O(max(n2/3m1/3ε−4/3,

√
nm/ε2)). Next, we note that

qS = (p1)S1
×(p2)S2

. Therefore, by Lemma II.3, the number

of samples drawn in the last step of the algorithm is at most

O(nm‖qS‖2/ε2) = O(nm‖(p1)S1 × (p2)S2‖2/ε2)
= O(nm‖(p1)S1‖2‖(p2)S2‖2/ε2)
= O(nmk−1/2m−1/2/ε2)

= O(max(n2/3m1/3ε−4/3,
√
nm/ε2)).

Drawing a sample from q requires taking only two samples

from p, which completes the analysis.

In the following proposition, we generalize the two-

dimensional algorithm to optimally test independence in any

number of dimensions.

Proposition II.15. Let p be a distribution on ×d
i=1[ni].

690691691



There is an algorithm that draws

O(max
j

((
d∏

i=1

ni)
1/2/ε2, n

1/3
j (

d∏
i=1

ni)
1/3/ε4/3))

samples form p and with probability at least 2/3 distin-
guishes between the coordinates of p being independent and
p being ε-far from any such distribution.

Roughly speaking, our independence tester in general

dimension uses recursion to reduce to the 2-dimensional

case, in which case we may apply Test-Independence-2D.

The details are given in the full version.

5) Testing Properties of Collections of Distributions: In

this subsection, we consider the model of testing properties

of collections of distributions [16] in both the sampling and

query models.

We begin by considering the sampling model, as this

is closely related to independence testing. In fact, in the

unknown-weights case, the problem is identical. In the

known-weights case, the problem is equivalent to indepen-

dence testing, where the algorithm is given explicit access

to one of the marginals (say, the distribution on [m]).
For this setting, we give a tester with sample complexity

O(max(
√
nm/ε2, n2/3m1/3/ε4/3)). We also note that this

bound can be shown the be optimal. Formally, we prove the

following:

Proposition II.16. There is an algorithm that given sample
access to a distribution p on [n] × [m] and an explicit
description of the marginal of p on [m] distinguishes be-
tween the cases that the coordinates of p are independent
and the case where p is ε-far from any product distri-
bution on [n] × [m] with probability at least 2/3 using
O(max(

√
nm/ε2, n2/3m1/3/ε4/3)) samples.

Next, we consider the query model. In this model, we

are essentially guaranteed that the distribution on [m] is

uniform, but are allowed to extract samples conditioned on

a particular value of the second coordinate. Equivalently,

there are m distributions q1, . . . , qm on [n]. We wish to

distinguish between the cases that the qi’s are identical

and the case where there is no distribution q so that
1
m

∑m
i=1 ‖q − qi‖1 ≤ ε. We show that we can solve this

problem with O(max(
√
n/ε2, n2/3/ε4/3)) samples for any

m. This is optimal for all m ≥ 2, even if we are guaranteed

that q1 = q2 = . . . = q�m/2� and q�m/2+1� = . . . = qm.

Proposition II.17. There is an algorithm that given sample
access to distributions q1, . . . , qm on [n] distinguishes be-
tween the cases that the qi’s are identical and the case where
there is no distribution q so that 1

m

∑m
i=1 ‖q−qi‖1 ≤ ε with

probability at least 2/3 using O(max(
√
n/ε2, n2/3/ε4/3))

samples.

The basic idea of the algorithm is as follows. Firstly, we

let q∗ denote the average of the distributions qi. We note that

it suffices to distinguish between the case where qi = q∗ for

all i and the case where
∑m

i=1 ‖qi − q∗‖1 � mε. There are

many ways this could happen. For example, if the average
size of ‖qi− q∗‖1 is on the order of ε, we could test for this

by testing a few qi against q. Alternatively, it could instead

be the case that most qi are close, but a small number (say

m/a of them) have distance on the order of aε. However,

this is even easier to test for. We would merely need to

check a random sample of O(a) i’s and test for aε-closeness.

Fortunately, the decrease in sample complexity from having

a larger ε will more than compensate for the increase in the

number of times we must run the test. In order to get the

algorithm to work, we merely need to carefully balance this

sort of test for different values of a and deal appropriately

with the error probabilities. See the full version for the proof.

6) Testing k-Histograms: Finally, in this subsection we

use our framework to design a sample-optimal algorithm for

the property of being a k-histogram with known intervals.

Let I be a partition of [n] into k intervals. We wish to be

able to distinguish between the cases where a distribution p
has constant density on each interval versus the case where

it is ε-far from any such distribution. We show the following:

Proposition II.18. Let I be a partition of [n] into k inter-
vals. Let p be a distribution on [n]. There exists an algorithm
which draws O(max(

√
n/ε2, n1/3k1/3/ε4/3)) independent

samples from p and distinguishes between the cases where
p is uniform on each of the intervals in I from the case
where p is ε-far from any such distribution with probability
at least 2/3.

We provide a sketch of the algorithm deferring the details

to the full version. First, we wish to guarantee that each of

the intervals has reasonably large support. We can achieve

this as follows: For each interval I ∈ I we divide each

bin within I into 
n/(k|I|)� bins. Next, in order to use

an �2-closeness tester, we want to further subdivide bins

using our randomized transformation. To this end, we let

m = min(k, n1/3k1/3/ε4/3) and take Poi(m) samples from

p. Then, for each interval Ii ∈ I, we divide each bin in

Ii into 
nai/(k|Ii|)�+ 1 new bins, where ai is the number

of samples that were drawn from Ii. Let I ′i denote the new

interval obtained from Ii. Let q′ be the distribution obtained

by sampling from p′ and then returning a uniform random

bin from the same interval I ′i as the sample. We claim that

the �2-norm of q′ is small. We can now apply the tester

from Lemma II.3 to distinguish between the cases where

p′ = q′ and ‖p′ − q′‖1 > ε with O(n1/2k1/2m−1/2/ε2) =
O(max(

√
n/ε2, n1/3k1/3/ε4/3)) samples.

III. SAMPLE COMPLEXITY LOWER BOUNDS

We illustrate our lower bound technique by proving tight

information-theoretic lower bounds for testing independence

(in any dimension), testing closeness in Hellinger distance,

and testing histograms. Due to space limitations, we present
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our lower bound for 2-dimensional independence testing and

defer the rest to the full version.

A. Lower Bound for Two-Dimensional Independence Testing

Theorem III.1. Let n ≥ m ≥ 2 be integers and ε > 0
a sufficiently small universal constant. Then, any algorithm
that draws samples from a distribution p on [n]× [m] and,
with probability at least 2/3, distinguishes between the case
that the coordinates of p are independent and the case
where p is ε-far from any product distribution must use
Ω(max(

√
nm/ε2, n2/3m1/3/ε4/3)) samples.

We prove the easier lower bound of Ω(
√
nmε−2) and

defer the Ω(n2/3m1/3/ε4/3) lower bound to the full version.

First, we note that it suffices to consider the case where n
and m are each sufficiently large, since Ω(ε−2) samples are

required to distinguish the uniform distribution on [2]× [2]
from the distribution which takes value (i, j) with probabil-

ity (1 + (2δi,j − 1)ε)/2.
Our goal is to exhibit distributions D and D′ over dis-

tributions on [n] × [m] so that all distributions in D have

independent coordinates, and all distributions in D′ are ε-far

from product distributions, so that for any k = o(
√
nm/ε2),

no algorithm given k independent samples from a random

element of either D or D′ can determine which family the

distribution came from with greater than 90% probability.

We will analyze the following generalization in order to

simplify the argument. First, we use the standard Poissoniza-

tion trick: instead of drawing k samples from the appropriate

distribution, we will draw Poi(k) samples. This is acceptable

because with 99% probability, this is at least Ω(k) samples.

Next, we relax the condition that elements of D′ be ε-far

from product distributions, and simply require that they are

Ω(ε)-far from product distributions with 99% probability.

This is clearly equivalent upon accepting an additional 1%
probability of failure, and altering ε by a constant factor.

Finally, we will relax the constraint that elements of D
and D′ are probability distributions. Instead, we will merely

require that they are positive measures on [n]× [m], so that

elements of D are product measures and elements of D′ are

Ω(ε)-far from being product measures with probability at

least 99%. We will require that the selected measures have

total mass Θ(1) with probability at least 99%, and instead

of taking samples from these measures (as this is no longer

as sensible concept), we will use the points obtained from a

Poisson process of parameter k (so the number of samples

in a given bin is a Poisson random variable with parameter

k times the mass of the bin). This is sufficient, because the

output of such a Poisson process for a measure μ is identical

to the outcome of drawing Poi(‖μ‖1k) samples from the

distribution μ/‖μ‖1. Moreover, the distance from μ to the

nearest product distribution is ‖μ‖1 times the distance from

μ/‖μ‖1 to the nearest product distribution.

We are now prepared to describe D and D′ explicitly:

• We define D to deterministically return the uniform dis-

tribution μ with μ(i, j) = 1
nm for all (i, j) ∈ [n]× [m].

• We define D′ to return the positive measure ν so that for

each (i, j) ∈ [n]× [m] the value ν(i, j) is either 1+ε
nm or

1−ε
nm each with probability 1/2 and independently over

different pairs (i, j).

It is clear that ‖μ‖1, ‖ν‖1 = Θ(1) deterministically. We

need to show that the relevant Poisson processes return

similar distributions. To do this, we consider the following

procedure: Let X be a uniformly random bit. Let p be a

measure on [n]× [m] drawn from either D if X = 0 or from

D′ if X = 1. We run a Poisson process with parameter k
on p, and let ai,j be the number of samples drawn from bin

(i, j). We wish to show that, given access to all ai,j’s, one is

not able to determine the value of X with probability more

than 51%. To prove this, it suffices to bound from above

the mutual information between X and the set of samples

(ai,j)(i,j)∈[n]×[m]. In particular, this holds true because of

the following simple fact:

Lemma III.2. If X is a uniform random bit and A is a
correlated random variable, then if f is any function so
that f(A) = X with at least 51% probability, then I(X :
A) ≥ 2 · 10−4.

In order to bound I(X : {ai,j}) from above, we note that

the ai,j’s are independent conditional on X, and therefore

I(X : (ai,j)(i,j)∈[n]×[m]) ≤
∑

(i,j)∈[n]×[m]

I(X : ai,j). (1)

By symmetry, it is clear that all of the ai,j’s are the same,

so it suffices to consider I(X : a) for a being one of the

ai,j . We prove the following technical lemma:

Lemma III.3. For all (i, j) ∈ [n] × [m], it holds I(X :
ai,j) = O(k2ε4/(m2n2)).

The proof of this lemma is technical and is deferred to

the full version. The essential idea is that we condition on

whether or not λ := k/(nm) ≥ 1. If λ < 1, then the

probabilities of seeing 0 or 1 samples are approximately the

same, and most of the information comes from how often

one sees exactly 2 samples. For λ ≥ 1, we are comparing a

Poisson distribution to a mixture of Poisson distributions

with the same average mean, and we can deal with the

information theory by making a Gaussian approximation.

By Lemma III.3, (1) yields that I(X :
(ai,j)(i,j)∈[n]×[m]) = O(k2ε4/mn) = o(1). In conjunction

with Lemma III.2, this implies that o(
√
mn/ε2) samples

are insufficient to reliably distinguish an element of D from

an element of D′. To complete the proof, it remains to

show that elements of D are all product distributions, and

that most elements of D′ are far from product distributions.

The former follows trivially, and the latter is not difficult.
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